Suppr超能文献

大肠杆菌MnmE蛋白GTP酶结构域的结构解析

Structural insights into the GTPase domain of Escherichia coli MnmE protein.

作者信息

Monleón Daniel, Martínez-Vicente Marta, Esteve Vicent, Yim Lucia, Prado Silvia, Armengod Maria-Eugenia, Celda Bernardo

机构信息

Department of Physical Chemistry, University of Valencia, C/Dr. Moliner, 50, Burjassot 46100 Valencia, Spain.

出版信息

Proteins. 2007 Feb 15;66(3):726-39. doi: 10.1002/prot.21186.

Abstract

The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well as on the formation of a MnmE transition state mimic. GTP hydrolysis by MnmE, but not GTP binding or formation of a complex with mant-GDP and aluminium fluoride, is impaired at acidic pH, suggesting that the chemistry of the transition state mimic is different to that of the true transition state, and that some residue(s), critical for GTP hydrolysis, is severely affected by low pH. We use a nuclear magnetic resonance (NMR)-based approach to get insights into the MnmE structure and properties. The combined use of NMR restraints and homology structural information allowed the determination of the MnmE G-domain structure in its free form. Chemical shift structure-based prediction provided a good basis for structure refinement and validation. Our data support that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis, although Arg252 may play a role in stabilization of the transition state.

摘要

大肠杆菌MnmE蛋白是一种参与tRNA修饰的50 kDa多结构域GTP酶。其在真核生物中的同源物对线粒体呼吸至关重要,因此人们认为人类的该蛋白可能与线粒体疾病有关。与Ras不同,MnmE具有较高的内在GTP酶活性,并且需要有效的GTP水解,而不仅仅是GTP结合,才能发挥功能活性。分离出的MnmE G结构域(165个残基)保留了整个蛋白的GTP酶活性,这表明它包含GTP水解的催化残基。为了探究MnmE的GTP水解机制,我们分析了低pH对GTP结合与水解以及对MnmE过渡态模拟物形成的影响。在酸性pH条件下,MnmE的GTP水解受到损害,但GTP结合或与mant-GDP和氟化铝形成复合物不受影响,这表明过渡态模拟物的化学性质与真实过渡态不同,并且一些对GTP水解至关重要的残基受到低pH的严重影响。我们使用基于核磁共振(NMR)的方法来深入了解MnmE的结构和性质。NMR限制和同源结构信息的联合使用使得能够确定游离形式的MnmE G结构域的结构。基于化学位移结构的预测为结构优化和验证提供了良好的基础。我们的数据支持,与其他GTP酶不同,MnmE不使用精氨酸指来驱动催化,尽管Arg252可能在过渡态的稳定中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验