Hug François, Grélot Laurent, Le Fur Yann, Cozzone Patrick J, Bendahan David
University of Nantes, Nantes Atlantic Universities, Laboratory of Motricity, Interactions, and Performance, Nantes, France.
Med Sci Sports Exerc. 2006 Dec;38(12):2151-8. doi: 10.1249/01.mss.0000235882.86734.9a.
In the present study we investigated whether a high volume of cycling training would influence the metabolic changes associated with a succession of three exhaustive cycling exercises.
Seven professional road cyclists (VO2max: 74.3 +/- 3.7 mL.min.kg; maximal power tolerated: 475 +/- 18 W; training: 22 +/- 3 h.wk) and seven sport sciences students (VO2max: 54.2 +/- 5.3 mL.min.kg; maximal power tolerated: 341 +/- 26 W; training: 6 +/- 2 h.wk) performed three different exhaustive cycling exercise bouts (progressive, constant load, and sprint) on an electrically braked cycloergometer positioned near the magnetic resonance scanner. Less than 45 s after the completion of each exercise bout, recovery kinetics of high-energy phosphorylated compounds and pH were measured using P-MR spectroscopy.
Resting values for phosphomonoesters (PME) and phosphodiesters (PDE) were significantly elevated in the cyclist group (PME/ATP: 0.82 +/- 0.11 vs 0.58 +/- 0.19; PDE/ATP: 0.27 +/- 0.03 vs 0.21 +/- 0.05). Phosphocreatine (PCr) consumption and inorganic phosphate (Pi) accumulation measured at end of exercise bouts 1 (PCr: 6.5 +/- 3.2 vs 10.4 +/- 1.6 mM; Pi: 1.6 +/- 0.7 vs 6.8 +/- 3.4 mM) and 3 (PCr: 5.6 +/- 2.4 vs 9.3 +/- 3.9 mM; Pi: 1.5 +/- 0.5 vs 7.7 +/- 3.3 mM) were reduced in cyclists compared with controls. During the recovery period after each exercise bout, the pH-recovery rate was larger in professional road cyclists, whereas the PCr-recovery kinetics were significantly faster for cyclists only for bout 3.
Whereas the PDE and PME elevation at rest in professional cyclists may indicate fiber-type changes and an imbalance between glycogenolytic and glycolytic activity, the lower PCr consumption during exercise and the faster pH-recovery kinetic clearly suggest an improved mitochondrial function.
在本研究中,我们调查了大量的自行车训练是否会影响与连续三次力竭性自行车运动相关的代谢变化。
七名职业公路自行车运动员(最大摄氧量:74.3±3.7 mL·min·kg;耐受最大功率:475±18 W;训练量:22±3 h/周)和七名运动科学专业学生(最大摄氧量:54.2±5.3 mL·min·kg;耐受最大功率:341±26 W;训练量:6±2 h/周)在位于磁共振扫描仪附近的电动刹车自行车测力计上进行了三次不同的力竭性自行车运动(渐进性、恒定负荷和冲刺)。每次运动结束后不到45秒,使用磷磁共振波谱测量高能磷酸化化合物和pH值的恢复动力学。
自行车运动员组的磷酸单酯(PME)和磷酸二酯(PDE)的静息值显著升高(PME/ATP:0.82±0.11对0.58±0.19;PDE/ATP:0.27±0.03对0.21±0.05)。在运动回合1(磷酸肌酸:6.5±3.2对10.4±1.6 mM;无机磷酸盐:1.6±0.7对6.8±3.4 mM)和3结束时测量的磷酸肌酸(PCr)消耗和无机磷酸盐(Pi)积累(PCr:5.6±2.4对9.3±3.9 mM;Pi:1.5±0.5对7.7±3.3 mM)与对照组相比,自行车运动员组有所降低。在每次运动回合后的恢复期间,职业公路自行车运动员的pH恢复率更高,而仅在回合3中,自行车运动员组的PCr恢复动力学明显更快。
职业自行车运动员静息时PDE和PME升高可能表明纤维类型变化以及糖原分解和糖酵解活性之间的不平衡,而运动期间较低的PCr消耗和更快的pH恢复动力学清楚地表明线粒体功能得到改善。