Suppr超能文献

用于测量收缩性微淋巴管中淋巴细胞速度和直径变化的图像相关算法。

Image correlation algorithm for measuring lymphocyte velocity and diameter changes in contracting microlymphatics.

作者信息

Dixon J Brandon, Gashev Anatoliy A, Zawieja David C, Moore James E, Coté Gerard L

机构信息

Department of Biomedical Engineering, Texas A and M University, Mail Stop 3120, College Station, TX 77843-3120, USA.

出版信息

Ann Biomed Eng. 2007 Mar;35(3):387-96. doi: 10.1007/s10439-006-9225-2. Epub 2006 Dec 7.

Abstract

Efforts have recently been made to estimate wall shear stress throughout the contractile cycle of mesenteric rat lymphatics with a high speed video microscopy system. This was prompted by reports in the literature that lymphatic pumping is related to wall shear stress. While one can estimate wall shear stress by tracking lymphocyte velocity, it is prohibitively tedious to manually track particles over a reasonable time frame for a good number of experiments. To overcome this, an image correlation method similar to digital particle imaging velocimetry was developed and tested on contracting lymphatics to measure both vessel diameter and fluid velocity. The program tracked temporal fluctuations in spatially averaged velocity with a standard error of prediction of 0.4 mm/s. From these studies we have measured velocities ranging from -2 to 4 mm/s. Diameter changes were also measured with a standard error of 7 microm. These algorithms and techniques could be beneficial for investigating various changes in contractile behavior as a function of changes in velocity and wall shear stress.

摘要

最近,人们利用高速视频显微镜系统,努力估算大鼠肠系膜淋巴管收缩周期内的壁面剪应力。文献报道称淋巴泵血与壁面剪应力有关,这促使了此项研究。虽然可以通过追踪淋巴细胞速度来估算壁面剪应力,但在相当数量的实验中,在合理的时间范围内手动追踪粒子极其繁琐。为克服这一问题,开发了一种类似于数字粒子图像测速的图像相关方法,并在收缩的淋巴管上进行测试,以测量血管直径和流体速度。该程序跟踪空间平均速度的时间波动,预测标准误差为0.4毫米/秒。通过这些研究,我们测量到的速度范围为-2至4毫米/秒。还测量了直径变化,标准误差为7微米。这些算法和技术可能有助于研究收缩行为随速度和壁面剪应力变化的各种变化。

相似文献

1
Image correlation algorithm for measuring lymphocyte velocity and diameter changes in contracting microlymphatics.
Ann Biomed Eng. 2007 Mar;35(3):387-96. doi: 10.1007/s10439-006-9225-2. Epub 2006 Dec 7.
2
Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
Microcirculation. 2006 Oct-Nov;13(7):597-610. doi: 10.1080/10739680600893909.
3
Measuring microlymphatic flow using fast video microscopy.
J Biomed Opt. 2005 Nov-Dec;10(6):064016. doi: 10.1117/1.2135791.
4
High-speed microscopy for in vivo monitoring of lymph dynamics.
J Biophotonics. 2018 Aug;11(8):e201700126. doi: 10.1002/jbio.201700126. Epub 2018 Jan 11.
5
Lymph transport in rat mesenteric lymphatics experiencing edemagenic stress.
Microcirculation. 2014 Jul;21(5):359-67. doi: 10.1111/micc.12112.
7
Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
Am J Physiol Regul Integr Comp Physiol. 2015 Nov 1;309(9):R1122-34. doi: 10.1152/ajpregu.00342.2014. Epub 2015 Sep 2.
10
Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function.
J Biomed Opt. 2012 Aug;17(8):086005. doi: 10.1117/1.JBO.17.8.086005.

引用本文的文献

1
Mechanical feedback mechanisms in a multiscale sliding filament model of lymphatic muscle pumping.
Appl Eng Sci. 2025 Jun;22. doi: 10.1016/j.apples.2025.100217. Epub 2025 Apr 4.
2
Restoration of cervical lymphatic vessel function in aging rescues cerebrospinal fluid drainage.
Nat Aging. 2024 Oct;4(10):1418-1431. doi: 10.1038/s43587-024-00691-3. Epub 2024 Aug 15.
4
Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
J R Soc Interface. 2020 Sep;17(170):20200598. doi: 10.1098/rsif.2020.0598. Epub 2020 Sep 30.
5
Fluids and their mechanics in tumour transit: shaping metastasis.
Nat Rev Cancer. 2020 Feb;20(2):107-124. doi: 10.1038/s41568-019-0221-x. Epub 2019 Nov 28.
6
A Probabilistic Model of the Germinal Center Reaction.
Front Immunol. 2019 Apr 3;10:689. doi: 10.3389/fimmu.2019.00689. eCollection 2019.
7
Lymphatic Vessel Network Structure and Physiology.
Compr Physiol. 2018 Dec 13;9(1):207-299. doi: 10.1002/cphy.c180015.
8
High-speed microscopy for in vivo monitoring of lymph dynamics.
J Biophotonics. 2018 Aug;11(8):e201700126. doi: 10.1002/jbio.201700126. Epub 2018 Jan 11.
9
The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers.
Biomicrofluidics. 2017 May 5;11(3):034105. doi: 10.1063/1.4983149. eCollection 2017 May.

本文引用的文献

1
Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
Microcirculation. 2006 Oct-Nov;13(7):597-610. doi: 10.1080/10739680600893909.
2
Measuring microlymphatic flow using fast video microscopy.
J Biomed Opt. 2005 Nov-Dec;10(6):064016. doi: 10.1117/1.2135791.
3
Regional variations of contractile activity in isolated rat lymphatics.
Microcirculation. 2004 Sep;11(6):477-92. doi: 10.1080/10739680490476033.
4
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct.
J Physiol. 2002 May 1;540(Pt 3):1023-37. doi: 10.1113/jphysiol.2001.016642.
6
Optimal sampling interval and edge detection algorithm for measurement of blood vessel diameter on a cineangiogram.
Invest Radiol. 1993 Dec;28(12):1128-33. doi: 10.1097/00004424-199312000-00008.
7
Absolute cross-sectional area measurements in quantitative coronary arteriography by dual-energy DSA.
Invest Radiol. 1991 Feb;26(2):119-27. doi: 10.1097/00004424-199102000-00005.
8
An algorithm for angiographic estimation of blood vessel diameter.
J Appl Physiol (1985). 1991 Nov;71(5):2050-8. doi: 10.1152/jappl.1991.71.5.2050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验