Suppr超能文献

动态剪切力和跨壁压力对集合淋巴管壁剪应力敏感性的影响。

Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.

作者信息

Kornuta Jeffrey A, Nepiyushchikh Zhanna, Gasheva Olga Y, Mukherjee Anish, Zawieja David C, Dixon J Brandon

机构信息

Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia;

Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2015 Nov 1;309(9):R1122-34. doi: 10.1152/ajpregu.00342.2014. Epub 2015 Sep 2.

Abstract

Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.

摘要

鉴于已知淋巴管系统具有机械敏感性,我们试图研究动态壁面剪应力(WSS)对集合淋巴管的影响,同时控制跨壁压力。我们使用先前开发的能够独立控制离体淋巴管跨轴压力梯度和平均跨壁压力的体外淋巴灌注系统(ELPS),对大鼠胸导管施加多种流动条件,同时控制跨壁压力并测量直径变化。通过逐渐增加通过血管的施加流量,我们确定了血管首次出现收缩抑制迹象时的WSS,并将这一点定义为血管的剪应力敏感性。在5 cmH2O(0.97达因/cm²)的跨壁压力下引发收缩反应的剪应力阈值明显高于3 cmH2O(0.64达因/cm²)时。当施加稳定的WSS时,收缩频率降低,但当施加的WSS振荡时,这种抑制作用会逆转,尽管两种条件下的平均壁面剪应力没有显著差异。当施加的振荡WSS足够大时,血流本身会使淋巴收缩与施加波形的精确频率同步。跨壁压力和WSS的变化率对淋巴管对血流的收缩反应都有显著影响。具体而言,随时间变化的剪应力可以改变对相性收缩频率的抑制,甚至协调收缩,这表明动态剪应力可能在集合淋巴管的收缩功能中发挥重要作用。

相似文献

1
Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
Am J Physiol Regul Integr Comp Physiol. 2015 Nov 1;309(9):R1122-34. doi: 10.1152/ajpregu.00342.2014. Epub 2015 Sep 2.
2
Ex vivo lymphatic perfusion system for independently controlling pressure gradient and transmural pressure in isolated vessels.
Ann Biomed Eng. 2014 Aug;42(8):1691-704. doi: 10.1007/s10439-014-1024-6. Epub 2014 May 9.
3
Entrainment of Lymphatic Contraction to Oscillatory Flow.
Sci Rep. 2019 Apr 9;9(1):5840. doi: 10.1038/s41598-019-42142-9.
4
A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
Biomech Model Mechanobiol. 2018 Dec;17(6):1687-1714. doi: 10.1007/s10237-018-1050-7. Epub 2018 Jul 14.
5
Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
Microcirculation. 2006 Oct-Nov;13(7):597-610. doi: 10.1080/10739680600893909.
6
Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct.
J Physiol. 2006 Sep 15;575(Pt 3):821-32. doi: 10.1113/jphysiol.2006.115212. Epub 2006 Jun 29.
8
The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
Sci Rep. 2019 Jul 23;9(1):10649. doi: 10.1038/s41598-019-46669-9.
9
Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction.
Am J Physiol Heart Circ Physiol. 2016 Jan 1;310(1):H60-70. doi: 10.1152/ajpheart.00640.2015. Epub 2015 Oct 30.
10
Lymphangion coordination minimally affects mean flow in lymphatic vessels.
Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H1183-9. doi: 10.1152/ajpheart.01340.2006. Epub 2007 Apr 27.

引用本文的文献

1
Mechanical feedback mechanisms in a multiscale sliding filament model of lymphatic muscle pumping.
Appl Eng Sci. 2025 Jun;22. doi: 10.1016/j.apples.2025.100217. Epub 2025 Apr 4.
2
Control of lymphatic pacemaking and pumping by mechanobiological signals.
J Physiol. 2025 Jun;603(11):3307-3327. doi: 10.1113/JP288477. Epub 2025 Jun 4.
3
Fluid dynamics and leukocyte transit in the lymphatic system.
PNAS Nexus. 2024 May 17;3(6):pgae195. doi: 10.1093/pnasnexus/pgae195. eCollection 2024 Jun.
4
Multiplex, high-throughput method to study cancer and immune cell mechanotransduction.
Commun Biol. 2024 Jun 1;7(1):674. doi: 10.1038/s42003-024-06327-x.
5
Hemodynamic regulation allows stable growth of microvascular networks.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2310993121. doi: 10.1073/pnas.2310993121. Epub 2024 Feb 22.
6
8
Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells.
Int J Stem Cells. 2023 Aug 30;16(3):251-259. doi: 10.15283/ijsc22211. Epub 2023 Jun 30.
9
Biomechanical control of lymphatic vessel physiology and functions.
Cell Mol Immunol. 2023 Sep;20(9):1051-1062. doi: 10.1038/s41423-023-01042-9. Epub 2023 Jun 2.

本文引用的文献

1
Mechanobiological oscillators control lymph flow.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10938-43. doi: 10.1073/pnas.1508330112. Epub 2015 Aug 17.
2
Lymph flow regulates collecting lymphatic vessel maturation in vivo.
J Clin Invest. 2015 Aug 3;125(8):2995-3007. doi: 10.1172/JCI79386. Epub 2015 Jul 27.
5
Ex vivo lymphatic perfusion system for independently controlling pressure gradient and transmural pressure in isolated vessels.
Ann Biomed Eng. 2014 Aug;42(8):1691-704. doi: 10.1007/s10439-014-1024-6. Epub 2014 May 9.
6
Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels.
Microcirculation. 2014 Oct;21(7):640-8. doi: 10.1111/micc.12143.
8
Lymph transport in rat mesenteric lymphatics experiencing edemagenic stress.
Microcirculation. 2014 Jul;21(5):359-67. doi: 10.1111/micc.12112.
10
Cyclic guanosine monophosphate and the dependent protein kinase regulate lymphatic contractility in rat thoracic duct.
J Physiol. 2013 Sep 15;591(18):4549-65. doi: 10.1113/jphysiol.2013.258681. Epub 2013 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验