Suppr超能文献

用于处理含金属废水的嗜热(65摄氏度)产硫化物流化床反应器性能的神经网络预测

Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.

作者信息

Sahinkaya Erkan, Ozkaya Bestamin, Kaksonen Anna H, Puhakka Jaakko A

机构信息

Institute of Environmental Engineering and Biotechnology, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere, Finland.

出版信息

Biotechnol Bioeng. 2007 Jul 1;97(4):780-7. doi: 10.1002/bit.21282.

Abstract

The performance of a fluidized-bed reactor (FBR) based sulfate reducing bioprocess was predicted using artificial neural network (ANN). The FBR was operated at high (65 degrees C) temperature and it was fed with iron (40-90 mg/L) and sulfate (1,000-1,500 mg/L) containing acidic (pH = 3.5-6) synthetic wastewater. Ethanol was supplemented as carbon and electron source for sulfate reducing bacteria (SRB). The wastewater pH of 4.3-4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. The oxidation of acetate is the rate-limiting step in the sulfidogenic ethanol oxidation by thermophilic SRB, which resulted in acetate accumulation. Sulfate reduction and acetate oxidation rates showed variation depending on the operational conditions with the maximum rates of 1 g/L/d (0.2 g/g volatile solids (VS)/d) and 0.3 g/L/d (0.06 g/g VS/d), respectively. This study presents an ANN model predicting the performance of the reactor and determining the optimal architecture of this model; such as best back-propagation (BP) algorithm and neuron numbers. The Levenberg-Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 20. The developed ANN model predicted acetate (R=0.91), sulfate (R=0.95), sulfide (R=0.97), and alkalinity (R=0.94) in the FBR effluent. Hence, the ANN based model can be used to predict the FBR performance, to control the operational conditions for improved process performance.

摘要

采用人工神经网络(ANN)预测了基于流化床反应器(FBR)的硫酸盐还原生物过程的性能。FBR在高温(65℃)下运行,进料为含有铁(40 - 90mg/L)和硫酸盐(1000 - 1500mg/L)的酸性(pH = 3.5 - 6)合成废水。添加乙醇作为硫酸盐还原菌(SRB)的碳源和电子源。废水pH值在4.3 - 4.4之间,通过乙酸氧化产生的碱度进行中和,平均出水pH值为7.8±0.8。乙酸氧化是嗜热SRB在硫化乙醇氧化过程中的限速步骤,导致乙酸积累。硫酸盐还原和乙酸氧化速率随操作条件而变化,最大速率分别为1g/L/d(0.2g/g挥发性固体(VS)/d)和0.3g/L/d(0.06g/g VS/d)。本研究提出了一个ANN模型,用于预测反应器性能并确定该模型的最优结构,如最佳反向传播(BP)算法和神经元数量。在12种BP算法中选择了Levenberg - Marquardt算法作为最佳算法,确定最优神经元数量为20。所开发的ANN模型预测了FBR出水中的乙酸(R = 0.91)、硫酸盐(R = 0.95)、硫化物(R = 0.97)和碱度(R = 0.94)。因此,基于ANN的模型可用于预测FBR性能,控制操作条件以提高工艺性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验