Peplow A T, Beardmore R E, Bresme F
Department of Mathematics, Imperial College, South Kensington, London, SW7 2AZ, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 2):046705. doi: 10.1103/PhysRevE.74.046705. Epub 2006 Oct 17.
We introduce a robust and efficient methodology to solve the Ornstein-Zernike integral equation using the pseudoarc length (PAL) continuation method that reformulates the integral equation in an equivalent but nonstandard form. This enables the computation of solutions in regions where the compressibility experiences large changes or where the existence of multiple solutions and so-called branch points prevents Newton's method from converging. We illustrate the use of the algorithm with a difficult problem that arises in the numerical solution of integral equations, namely the evaluation of the so-called no-solution line of the Ornstein-Zernike hypernetted chain (HNC) integral equation for the Lennard-Jones potential. We are able to use the PAL algorithm to solve the integral equation along this line and to connect physical and nonphysical solution branches (both isotherms and isochores) where appropriate. We also show that PAL continuation can compute solutions within the no-solution region that cannot be computed when Newton and Picard methods are applied directly to the integral equation. While many solutions that we find are new, some correspond to states with negative compressibility and consequently are not physical.
我们引入了一种稳健且高效的方法,使用伪弧长(PAL)延拓法来求解奥恩斯坦 - 泽尔尼克积分方程,该方法将积分方程重新表述为一种等效但非标准的形式。这使得在压缩性经历大幅变化的区域,或者在存在多个解以及所谓的分支点从而阻止牛顿法收敛的情况下,能够计算出解。我们用一个在积分方程数值解中出现的难题来说明该算法的应用,即评估针对 Lennard - Jones 势的奥恩斯坦 - 泽尔尼克超网链(HNC)积分方程的所谓无解线。我们能够使用 PAL 算法沿着这条线求解积分方程,并在适当的地方连接物理和非物理解分支(等温线和等容线)。我们还表明,当直接将牛顿法和皮卡德法应用于积分方程时无法计算的无解区域内,PAL 延拓可以计算出解。虽然我们找到的许多解是新的,但有些对应于具有负压缩性的状态,因此不是物理状态。