Svidzinsky Anatoly A, Scully Marlan O
Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843, USA.
Phys Rev Lett. 2006 Nov 10;97(19):190402. doi: 10.1103/PhysRevLett.97.190402. Epub 2006 Nov 7.
We present a new method of calculating the distribution function and fluctuations for a Bose-Einstein condensate (BEC) of N interacting atoms. The present formulation combines our previous master equation and canonical ensemble quasiparticle techniques. It is applicable both for ideal and interacting Bogoliubov BEC and yields remarkable accuracy at all temperatures. For the interacting gas of 200 bosons in a box we plot the temperature dependence of the first four central moments of the condensate particle number and compare the results with the ideal gas. For the interacting mesoscopic BEC, as with the ideal gas, we find a smooth transition for the condensate particle number as we pass through the critical temperature.
我们提出了一种计算N个相互作用原子的玻色-爱因斯坦凝聚体(BEC)的分布函数和涨落的新方法。当前的公式结合了我们之前的主方程和正则系综准粒子技术。它适用于理想和相互作用的博戈留波夫BEC,并且在所有温度下都具有显著的精度。对于盒子中200个玻色子的相互作用气体,我们绘制了凝聚体粒子数前四个中心矩的温度依赖性,并将结果与理想气体进行比较。对于相互作用的介观BEC,与理想气体一样,当我们穿过临界温度时,我们发现凝聚体粒子数有一个平滑的转变。