Tarasov Sergey, Kocharovsky Vladimir, Kocharovsky Vitaly
Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod 603950, Russia.
Department of the Advanced School of General and Applied Physics, Lobachevsky State University, Nizhny Novgorod 603950, Russia.
Entropy (Basel). 2018 Feb 27;20(3):153. doi: 10.3390/e20030153.
We analytically calculate the statistics of Bose-Einstein condensate (BEC) fluctuations in an interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations. We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit. We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend on the trap's form and boundary conditions. Remarkably, these effects persist with increasing interparticle interaction and even in the thermodynamic limit-only the mean BEC occupation, not BEC fluctuations, becomes independent on the trap's form and boundary conditions.
我们在平均场博戈留波夫和托马斯 - 费米近似下,通过解析计算被困在具有狄利克雷、融合或周期性边界条件的三维立方或矩形盒子中的相互作用气体中玻色 - 爱因斯坦凝聚(BEC)涨落的统计特性。我们研究了有限数量被困粒子的介观系统及其热力学极限。我们发现,首先,BEC涨落异常大且是非高斯的;其次,它取决于陷阱的形状和边界条件。值得注意的是,随着粒子间相互作用的增加,甚至在热力学极限下,这些效应仍然存在——只有BEC的平均占据数,而不是BEC涨落,变得与陷阱的形状和边界条件无关。