Suppr超能文献

相互作用气体中玻色-爱因斯坦凝聚体的反常统计:热力学极限下陷阱形状和边界条件的影响。

Anomalous Statistics of Bose-Einstein Condensate in an Interacting Gas: An Effect of the Trap's Form and Boundary Conditions in the Thermodynamic Limit.

作者信息

Tarasov Sergey, Kocharovsky Vladimir, Kocharovsky Vitaly

机构信息

Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod 603950, Russia.

Department of the Advanced School of General and Applied Physics, Lobachevsky State University, Nizhny Novgorod 603950, Russia.

出版信息

Entropy (Basel). 2018 Feb 27;20(3):153. doi: 10.3390/e20030153.

Abstract

We analytically calculate the statistics of Bose-Einstein condensate (BEC) fluctuations in an interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations. We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit. We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend on the trap's form and boundary conditions. Remarkably, these effects persist with increasing interparticle interaction and even in the thermodynamic limit-only the mean BEC occupation, not BEC fluctuations, becomes independent on the trap's form and boundary conditions.

摘要

我们在平均场博戈留波夫和托马斯 - 费米近似下,通过解析计算被困在具有狄利克雷、融合或周期性边界条件的三维立方或矩形盒子中的相互作用气体中玻色 - 爱因斯坦凝聚(BEC)涨落的统计特性。我们研究了有限数量被困粒子的介观系统及其热力学极限。我们发现,首先,BEC涨落异常大且是非高斯的;其次,它取决于陷阱的形状和边界条件。值得注意的是,随着粒子间相互作用的增加,甚至在热力学极限下,这些效应仍然存在——只有BEC的平均占据数,而不是BEC涨落,变得与陷阱的形状和边界条件无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d34d/7512670/20e326a66e7a/entropy-20-00153-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验