Maggs A C
Laboratoire de Physico-Chime Théorique, UMR CNRS-ESPCI 7083, 10 rue Vauquelin, 75231 Paris Cedex 05, France.
Phys Rev Lett. 2006 Nov 10;97(19):197802. doi: 10.1103/PhysRevLett.97.197802. Epub 2006 Nov 9.
We introduce a multiscale Monte Carlo algorithm to simulate dense simple fluids. The probability of an update follows a power law distribution in its length scale. The collective motion of clusters of particles requires generalization of the Metropolis update rule to impose detailed balance. We apply the method to the simulation of a Lennard-Jones fluid and show improvements in efficiency over conventional Monte Carlo and molecular dynamics simulations, eliminating hydrodynamic slowing down.
我们引入一种多尺度蒙特卡罗算法来模拟稠密简单流体。更新的概率在其长度尺度上遵循幂律分布。粒子团簇的集体运动需要对梅特罗波利斯更新规则进行推广以实现细致平衡。我们将该方法应用于 Lennard-Jones 流体的模拟,并展示出相较于传统蒙特卡罗和分子动力学模拟在效率上的提升,消除了流体动力学慢化现象。