Jäger Sebastian, Schmidle Heiko, Klapp Sabine H L
Institute of Theoretical Physics, Technical University Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011402. doi: 10.1103/PhysRevE.86.011402. Epub 2012 Jul 9.
In colloidal suspensions, self-organization processes can be easily fueled by external fields. Here we consider monolayers of particles with permanent dipole moments that are driven by rotating external fields. In recent experiments, it has been shown that the particles in such systems self-organize into two-dimensional clusters. Here we report results from a computer simulation study of these pattern forming systems. Specifically, we employ Langevin dynamics simulations, Brownian dynamics simulations that include hydrodynamic interactions, and Wang-Landau Monte Carlo simulations of soft spheres interacting via dipolar potentials. We investigate at which field strengths and frequencies clusters form and explore the influence of hydrodynamic interactions. We also examine the phase behavior of the equilibrium system resulting from a time average of the colloidal interactions in the rotating field. In this way we demonstrate that the clustering described in the driven system arises from a first-order phase transition between a vapor and a condensed phase.
在胶体悬浮液中,自组织过程很容易由外部场驱动。在这里,我们考虑具有永久偶极矩的粒子单层,它们由旋转的外部场驱动。在最近的实验中,已经表明此类系统中的粒子会自组织成二维簇。在这里,我们报告这些图案形成系统的计算机模拟研究结果。具体而言,我们采用朗之万动力学模拟、包含流体动力学相互作用的布朗动力学模拟以及通过偶极势相互作用的软球的王-兰道蒙特卡罗模拟。我们研究在哪些场强和频率下会形成簇,并探索流体动力学相互作用的影响。我们还研究了由旋转场中胶体相互作用的时间平均值产生的平衡系统的相行为。通过这种方式,我们证明了驱动系统中描述的聚类源于气相和凝聚相之间的一级相变。