Zou Quan, Bornat Yannick, Saïghi Sylvain, Tomas Jean, Renaud Sylvie, Destexhe Alain
Integrative and Computational Neuroscience Unit, CNRS, Gif-sur-Yvette, France.
Network. 2006 Sep;17(3):211-33. doi: 10.1080/09548980600711124.
We introduce and test a system for simulating networks of conductance-based neuron models using analog circuits. At the single-cell level, we use custom-designed analog circuits (ASICs) that simulate two types of spiking neurons based on Hodgkin-Huxley like dynamics: "regular spiking" excitatory neurons with spike-frequency adaptation, and "fast spiking" inhibitory neurons. Synaptic interactions are mediated by conductance-based synaptic currents described by kinetic models. Connectivity and plasticity rules are implemented digitally through a real time interface between a computer and a PCI board containing the ASICs. We show a prototype system of a few neurons interconnected with synapses undergoing spike-timing dependent plasticity (STDP), and compare this system with numerical simulations. We use this system to evaluate the effect of parameter dispersion on the behavior of small circuits of neurons. It is shown that, although the exact spike timings are not precisely emulated by the ASIC neurons, the behavior of small networks with STDP matches that of numerical simulations. Thus, this mixed analog-digital architecture provides a valuable tool for real-time simulations of networks of neurons with STDP. They should be useful for any real-time application, such as hybrid systems interfacing network models with biological neurons.
我们介绍并测试了一种使用模拟电路来模拟基于电导的神经元模型网络的系统。在单细胞层面,我们使用定制设计的模拟电路(专用集成电路),其基于类似霍奇金 - 赫胥黎的动力学来模拟两种类型的发放神经元:具有发放频率适应性的“规则发放”兴奋性神经元,以及“快速发放”抑制性神经元。突触相互作用由动力学模型描述的基于电导的突触电流介导。连接性和可塑性规则通过计算机与包含专用集成电路的PCI板之间的实时接口以数字方式实现。我们展示了一个由少数神经元通过经历发放时间依赖可塑性(STDP)的突触相互连接的原型系统,并将该系统与数值模拟进行比较。我们使用这个系统来评估参数离散对小型神经元电路行为的影响。结果表明,尽管专用集成电路神经元不能精确模拟确切的发放时间,但具有STDP的小型网络的行为与数值模拟相匹配。因此,这种混合模拟 - 数字架构为具有STDP的神经元网络的实时模拟提供了一个有价值的工具。它们对于任何实时应用都应该是有用的,例如将网络模型与生物神经元连接的混合系统。