Indiveri Giacomo, Linares-Barranco Bernabé, Hamilton Tara Julia, van Schaik André, Etienne-Cummings Ralph, Delbruck Tobi, Liu Shih-Chii, Dudek Piotr, Häfliger Philipp, Renaud Sylvie, Schemmel Johannes, Cauwenberghs Gert, Arthur John, Hynna Kai, Folowosele Fopefolu, Saighi Sylvain, Serrano-Gotarredona Teresa, Wijekoon Jayawan, Wang Yingxue, Boahen Kwabena
Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland.
Front Neurosci. 2011 May 31;5:73. doi: 10.3389/fnins.2011.00073. eCollection 2011.
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
脉冲神经元的硬件实现对于各种各样的应用可能极其有用,从大规模神经系统的高速建模到实时行为系统,再到双向脑机接口。用于实现硅神经元的具体电路解决方案取决于应用需求。在本文中,我们描述了用于实现这些电路的最常见构建模块和技术,并概述了广泛的神经形态硅神经元,它们实现了不同的计算模型,从基于生物物理逼真度和电导的霍奇金-赫胥黎模型到二维广义自适应积分发放模型。我们比较了所描述的每种硅神经元设计所使用的不同设计方法,并用从各种制造的超大规模集成电路芯片测量得到的实验结果展示了它们的特性。