Suppr超能文献

基于睡眠期间无创二氧化碳测量的呼吸控制模型参数估计

Parameter estimation of a respiratory control model from noninvasive carbon dioxide measurements during sleep.

作者信息

Aittokallio T, Gyllenberg M, Polo O, Virkki A

机构信息

Department of Mathematics, University of Turku, FIN-200141 Turku, Finland.

出版信息

Math Med Biol. 2007 Jun;24(2):225-49. doi: 10.1093/imammb/dql031. Epub 2006 Dec 12.

Abstract

A new method for estimating the parameters of a human gas exchange model is presented. Sensitivity analysis is used both to inspect the relative importance of the model parameters and to speed up the par-ameter estimation process. Multistart optimization is used to compensate for the effects of partial and noisy measurements. The validity of the method is first investigated with a test problem for which par-ameter identifiability is shown. The method is then applied to the estimation of sleep-related changes in the respiratory control system from the end-tidal and transcutaneous carbon dioxide measurements on human subjects. The results show that it is possible to gain insight into the behaviour of the rather complex physiological system using only a few noninvasive measurements and tractable computations.

摘要

提出了一种估计人体气体交换模型参数的新方法。灵敏度分析用于考察模型参数的相对重要性,并加快参数估计过程。多起点优化用于补偿部分测量和噪声测量的影响。首先通过一个参数可识别性已得到证明的测试问题来研究该方法的有效性。然后将该方法应用于根据人体受试者的呼气末和经皮二氧化碳测量值来估计呼吸控制系统中与睡眠相关的变化。结果表明,仅使用少量非侵入性测量和易于处理的计算就有可能深入了解相当复杂的生理系统的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验