Fink Martin, Batzel Jerry J, Tran Hien
Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
Cardiovasc Eng. 2008 Jun;8(2):120-34. doi: 10.1007/s10558-007-9051-7.
In this paper we compare several approaches to identifying certain key respiratory control parameters relying on data normally available from non-invasive measurements. We consider a simple model of the respiratory control system and describe issues related to numerical estimates of key parameters involved in respiratory function such as central and peripheral control gains, transport delay, and lung compartment volumes. The combination of model-specific structure and limited data availability influences the parameter estimation process. Methods for studying how to improve the parameter estimation process are examined including classical and generalized sensitivity analysis, and eigenvalue grouping. These methods are applied and compared in the context of clinically available data. These methods are also compared in conjunction with specialized tests such as the minimally invasive single-breath CO2 test that can improve the estimation, and the enforced fixed breathing test, which opens the control loop in the system. The analysis shows that it is impossible to estimate central and peripheral gain simultaneously without usage of ventilation measurement and a controlled perturbation of the respiratory system, such as the CO2 test. The numerical results are certainly model dependent, but the illustrated methods, the nature of the comparisons, and protocols will carry over to other models and data configurations.
在本文中,我们比较了几种依靠非侵入性测量通常可获得的数据来识别某些关键呼吸控制参数的方法。我们考虑了呼吸控制系统的一个简单模型,并描述了与呼吸功能中涉及的关键参数的数值估计相关的问题,如中枢和外周控制增益、传输延迟以及肺腔容积。模型特定结构和有限数据可用性的结合影响了参数估计过程。研究了如何改进参数估计过程的方法,包括经典和广义灵敏度分析以及特征值分组。这些方法在临床可用数据的背景下进行了应用和比较。这些方法还与专门的测试相结合进行了比较,例如可以改进估计的微创单次呼吸二氧化碳测试,以及打开系统控制回路的强制固定呼吸测试。分析表明,在不使用通气测量和对呼吸系统进行受控扰动(如二氧化碳测试)的情况下,不可能同时估计中枢和外周增益。数值结果当然依赖于模型,但所说明的方法、比较的性质和方案将适用于其他模型和数据配置。