Suppr超能文献

信号识别颗粒RNA在共翻译蛋白质靶向中提供生理上必需的GTP酶激活功能。

SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting.

作者信息

Siu Fai Y, Spanggord Richard J, Doudna Jennifer A

机构信息

Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.

出版信息

RNA. 2007 Feb;13(2):240-50. doi: 10.1261/rna.135407. Epub 2006 Dec 12.

Abstract

The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP-receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP-receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP-receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo.

摘要

信号识别颗粒(SRP)通过核糖体相关新生多肽与膜相关SRP受体的协同结合与释放,在共翻译过程中将蛋白质靶向细胞膜。SRP受体复合物对GTP的摄取和水解控制着这个靶向循环。然而,由于目前还没有已知的针对SRP和SRP受体GTP酶的GTP酶激活蛋白(GAP),因此尚不清楚在体内蛋白质运输过程中GTP水解是否以及如何被刺激。通过生化和遗传实验,我们在此表明,SRP RNA将SRP受体复合物的GTP酶活性提高到细胞存活所需的临界阈值以上。此外,这种刺激是SRP RNA四环的特性。赋予生长缺陷表型的SRP RNA四环突变体可以组装成SRP受体复合物,但在体外不能刺激这些复合物中的GTP水解。拴系羟基自由基探测数据表明,RNA四环在SRP受体复合物中的特定定位是将GTP酶活性刺激到足以支持细胞生长的水平所必需的。这些结果解释了为什么不需要外部GAP,以及为什么在体内需要系统发育保守的SRP RNA四环。

相似文献

2
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle.
Nat Struct Mol Biol. 2005 Dec;12(12):1116-22. doi: 10.1038/nsmb1025. Epub 2005 Nov 20.
3
The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting.
Mol Biol Cell. 2007 Jul;18(7):2728-34. doi: 10.1091/mbc.e07-02-0117. Epub 2007 May 16.
4
The crystal structure of the signal recognition particle in complex with its receptor.
Science. 2011 Feb 18;331(6019):881-6. doi: 10.1126/science.1196473.
5
6
Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end.
J Biol Chem. 2013 Dec 20;288(51):36385-97. doi: 10.1074/jbc.M113.513614. Epub 2013 Oct 22.
7
Co-translational protein targeting by the signal recognition particle.
FEBS Lett. 2005 Feb 7;579(4):921-6. doi: 10.1016/j.febslet.2004.11.049.
8
Evidence for a novel GTPase priming step in the SRP protein targeting pathway.
EMBO J. 2001 Dec 3;20(23):6724-34. doi: 10.1093/emboj/20.23.6724.
9
Multi-state targeting machinery govern the fidelity and efficiency of protein localization.
Adv Exp Med Biol. 2014;805:385-409. doi: 10.1007/978-3-319-02970-2_16.

引用本文的文献

1
Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway.
Protein J. 2019 Jun;38(3):262-273. doi: 10.1007/s10930-019-09841-8.
5
Targeting and Insertion of Membrane Proteins.
EcoSal Plus. 2017 Mar;7(2). doi: 10.1128/ecosalplus.ESP-0012-2016.
7
Allosteric response and substrate sensitivity in peptide binding of the signal recognition particle.
J Biol Chem. 2014 Oct 31;289(44):30868-30879. doi: 10.1074/jbc.M114.584912. Epub 2014 Sep 18.
9
Co-translational protein targeting to the bacterial membrane.
Biochim Biophys Acta. 2014 Aug;1843(8):1433-41. doi: 10.1016/j.bbamcr.2013.10.013. Epub 2013 Oct 24.
10
The structural basis of FtsY recruitment and GTPase activation by SRP RNA.
Mol Cell. 2013 Dec 12;52(5):643-54. doi: 10.1016/j.molcel.2013.10.005. Epub 2013 Nov 7.

本文引用的文献

1
A fast and efficient procedure to produce scFvs specific for large macromolecular complexes.
J Immunol Methods. 2007 Jan 10;318(1-2):95-101. doi: 10.1016/j.jim.2006.10.005. Epub 2006 Nov 3.
2
Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site.
J Mol Biol. 2006 Jul 14;360(3):631-43. doi: 10.1016/j.jmb.2006.05.031. Epub 2006 May 26.
3
An essential GTPase promotes assembly of preribosomal RNA processing complexes.
Mol Cell. 2005 Nov 23;20(4):633-43. doi: 10.1016/j.molcel.2005.09.017.
4
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle.
Nat Struct Mol Biol. 2005 Dec;12(12):1116-22. doi: 10.1038/nsmb1025. Epub 2005 Nov 20.
5
Conformation of 4.5S RNA in the signal recognition particle and on the 30S ribosomal subunit.
RNA. 2005 Sep;11(9):1374-84. doi: 10.1261/rna.7219805. Epub 2005 Jul 25.
6
Conformations of the signal recognition particle protein Ffh from Escherichia coli as determined by FRET.
J Mol Biol. 2005 Aug 12;351(2):417-30. doi: 10.1016/j.jmb.2005.06.023.
8
Co-translational protein targeting by the signal recognition particle.
FEBS Lett. 2005 Feb 7;579(4):921-6. doi: 10.1016/j.febslet.2004.11.049.
9
Mechanism of association and reciprocal activation of two GTPases.
PLoS Biol. 2004 Oct;2(10):e320. doi: 10.1371/journal.pbio.0020320. Epub 2004 Sep 21.
10
Structural insights into the signal recognition particle.
Annu Rev Biochem. 2004;73:539-57. doi: 10.1146/annurev.biochem.73.011303.074048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验