Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106.
J Biol Chem. 2014 Oct 31;289(44):30868-30879. doi: 10.1074/jbc.M114.584912. Epub 2014 Sep 18.
We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway.
我们使用热力学自由能循环方法和微秒时间尺度的分子动力学模拟来描述信号识别颗粒 (SRP) 的构象动力学和底物选择性。SRP 是共翻译蛋白靶向机制的核心组成部分,它与新生蛋白的 N 端信号肽 (SP) 结合。我们确定了 SRP 在底物结合时相对构象稳定性的变化,以量化 SRP 域之间的变构耦合。特别是对于二肽氨肽酶,它是一种被 SRP 识别用于共翻译靶向的 SP,研究发现底物结合会导致 SRP 向与新生蛋白靶向相关的构象发生实质性变化,并且发现通过增加 SP 的疏水性的突变可以适度增强这种变化。然而,对于碱性磷酸酶,它是一种被识别用于翻译后靶向的 SP,底物结合会导致 SRP 构象分布发生相反的变化,远离靶向构象。微秒时间尺度的轨迹揭示了 SRP 构象景观的固有灵活性,并通过说明 FRET 对之间 10nm 长度尺度的变化是通过连接柔性连接区的 SRP 结构域的刚体运动发生的,为最近的单分子研究提供了见解。总之,这些结果为以下假设提供了直接证据:即 SRP 中的底物控制的构象转换为区分不同 SP 并将底物结合与蛋白靶向途径中的下游步骤连接提供了一种机制。