文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质-配体复合物的结晶

Crystallization of protein-ligand complexes.

作者信息

Hassell Anne M, An Gang, Bledsoe Randy K, Bynum Jane M, Carter H Luke, Deng Su-Jun J, Gampe Robert T, Grisard Tamara E, Madauss Kevin P, Nolte Robert T, Rocque Warren J, Wang Liping, Weaver Kurt L, Williams Shawn P, Wisely G Bruce, Xu Robert, Shewchuk Lisa M

机构信息

Department of Computational, Analytical and Structural Sciences, Glaxo SmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):72-9. doi: 10.1107/S0907444906047020. Epub 2006 Dec 13.


DOI:10.1107/S0907444906047020
PMID:17164529
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2483499/
Abstract

Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein-ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks.

摘要

长期以来,获得衍射质量的晶体一直是解析蛋白质三维结构的瓶颈。蛋白质与底物、核酸、辅因子或小分子结合时通常会得到稳定。另一方面,这些配体有可能诱导蛋白质发生显著的构象变化,可能需要从头筛选以找到新的晶体形式。本文概述了在以下几个方面获得蛋白质-配体复合物晶体的策略:(i) 蛋白质与感兴趣的配体共表达,(ii) 在蛋白质纯化过程中使用配体,(iii) 共结晶和 (iv) 浸泡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/0e6225158c21/d-63-00072-fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/a992096fc7dc/d-63-00072-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/18341d306ac9/d-63-00072-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/c9deae552930/d-63-00072-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/9e1729834eb4/d-63-00072-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/46bab3a12f52/d-63-00072-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/f2a944d5ada6/d-63-00072-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/063060a4afe6/d-63-00072-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/f708f3657e78/d-63-00072-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/752a52663faf/d-63-00072-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/0904a48029a2/d-63-00072-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/3448ea054f8e/d-63-00072-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/b3f41ad43a4e/d-63-00072-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/ca34a64aa4f7/d-63-00072-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/eeadc0e8b876/d-63-00072-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/b54511a3c553/d-63-00072-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/8ce20ebd67b2/d-63-00072-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/c59d63314e31/d-63-00072-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/19c042dfb563/d-63-00072-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/0e6225158c21/d-63-00072-fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/a992096fc7dc/d-63-00072-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/18341d306ac9/d-63-00072-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/c9deae552930/d-63-00072-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/9e1729834eb4/d-63-00072-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/46bab3a12f52/d-63-00072-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/f2a944d5ada6/d-63-00072-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/063060a4afe6/d-63-00072-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/f708f3657e78/d-63-00072-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/752a52663faf/d-63-00072-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/0904a48029a2/d-63-00072-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/3448ea054f8e/d-63-00072-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/b3f41ad43a4e/d-63-00072-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/ca34a64aa4f7/d-63-00072-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/eeadc0e8b876/d-63-00072-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/b54511a3c553/d-63-00072-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/8ce20ebd67b2/d-63-00072-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/c59d63314e31/d-63-00072-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/19c042dfb563/d-63-00072-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/2645605/0e6225158c21/d-63-00072-fig19.jpg

相似文献

[1]
Crystallization of protein-ligand complexes.

Acta Crystallogr D Biol Crystallogr. 2007-1

[2]
Crystallization to obtain protein-ligand complexes for structure-aided drug design.

Acta Crystallogr D Biol Crystallogr. 2006-6

[3]
X-ray crystallography of protein-ligand interactions.

Methods Mol Biol. 2005

[4]
Effect of crystal freezing and small-molecule binding on internal cavity size in a large protein: X-ray and docking studies of lipoxygenase at ambient and low temperature at 2.0 A resolution.

Acta Crystallogr D Biol Crystallogr. 2006-7

[5]
The X-ray structure of zebrafish (Danio rerio) ileal bile acid-binding protein reveals the presence of binding sites on the surface of the protein molecule.

J Mol Biol. 2009-1-9

[6]
Crystal structure of chicken liver basic fatty acid-binding protein complexed with cholic acid.

Biochemistry. 2004-11-9

[7]
In-plate protein crystallization, in situ ligand soaking and X-ray diffraction.

Acta Crystallogr D Biol Crystallogr. 2011-9

[8]
Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals.

J Struct Biol. 2006-12

[9]
Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions.

J Med Chem. 2009-9-24

[10]
X-ray crystallography of agonist/antagonist-bound receptors.

Methods Mol Biol. 2009

引用本文的文献

[1]
Atomistic-Level Insights into the Role of Mutations in the Engineering of PET Hydrolases: A Systematic Review.

Int J Mol Sci. 2025-8-8

[2]
Development of a succinyl CoA:3-ketoacid CoA transferase inhibitor selective for peripheral tissues that improves glycemia in obesity.

iScience. 2025-4-3

[3]
Structural Biology for Target Identification and Validation.

Methods Mol Biol. 2025

[4]
Challenges and Advances in the Encapsulation of Bioactive Ingredients Using Whey Proteins.

Foods. 2025-2-17

[5]
Cryo-EM structures of apo and atorvastatin-bound human 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

Acta Crystallogr F Struct Biol Commun. 2025-3-1

[6]
Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays.

PLoS One. 2024-12-3

[7]
Revealing protein structures: crystallization of protein-ligand complexes - co-crystallization and crystal soaking.

FEBS Open Bio. 2025-4

[8]
Turmeric-Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation.

Molecules. 2024-7-26

[9]
The Structural Features of MlaD Illuminate its Unique Ligand-Transporting Mechanism and Ancestry.

Protein J. 2024-4

[10]
LifeSoaks: a tool for analyzing solvent channels in protein crystals and obstacles for soaking experiments.

Acta Crystallogr D Struct Biol. 2023-9-1

本文引用的文献

[1]
Industrial perspective on X-ray data collection and analysis.

Acta Crystallogr D Biol Crystallogr. 2006-1

[2]
A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor.

J Biol Chem. 2005-9-2

[3]
Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance.

Mol Cell. 2004-11-5

[4]
Progesterone receptor ligand binding pocket flexibility: crystal structures of the norethindrone and mometasone furoate complexes.

J Med Chem. 2004-6-17

[5]
Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition.

Cell. 2002-7-12

[6]
Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone.

Proc Natl Acad Sci U S A. 2001-4-24

[7]
Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations.

J Biol Chem. 2000-8-25

[8]
Atomic structure of progesterone complexed with its receptor.

Nature. 1998-5-28

[9]
Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains.

Proc Natl Acad Sci U S A. 1998-5-26

[10]
Molecular basis of agonism and antagonism in the oestrogen receptor.

Nature. 1997-10-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索