Bhattacharyya Rangeet, Frydman Lucio
Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
J Am Chem Soc. 2006 Dec 20;128(50):16014-5. doi: 10.1021/ja067170h.
Among the methods proposed in recent years toward the acceleration of multidimensional NMR acquisitions is an "ultrafast" approach, capable of delivering arbitrary 2D correlations within a single scan. This scheme operates by parallelizing the indirect-domain temporal incrementation involved in 2D acquisitions, using as aid an ancillary inhomogeneous frequency broadening acting in combination with a train of frequency-shifted RF pulses. So far, all implementations of this frequency broadening have relied on magnetic field gradients; yet the practical performance of gradient-based approaches is sometimes inadequate-for instance when applied on solid samples subject to magic-angle spinning. In order to deal with these cases, an alternative encoding protocol is here introduced and experimentally exemplified, based on exploiting the intrinsic anisotropy that spin interactions exhibit in the solid state as the ancillary broadening in charge of encoding the interactions to be measured. Principles and preliminary examples of the new orientationally encoded ultrafast 2D NMR principle thus resulting are presented and discussed.
近年来提出的加速多维核磁共振采集的方法中,有一种“超快”方法,能够在单次扫描中实现任意二维相关性。该方案通过并行化二维采集中涉及的间接域时间增量来操作,借助辅助的非均匀频率展宽,并结合一系列频移射频脉冲。到目前为止,这种频率展宽的所有实现都依赖于磁场梯度;然而,基于梯度的方法的实际性能有时并不理想——例如,当应用于进行魔角旋转的固体样品时。为了处理这些情况,本文引入了一种替代编码协议,并通过实验进行了举例说明,该协议基于利用自旋相互作用在固态中表现出的固有各向异性作为负责编码待测量相互作用的辅助展宽。本文展示并讨论了由此产生的新的取向编码超快二维核磁共振原理的原理和初步示例。