Kong Jong Rock, Krische Michael J
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
J Am Chem Soc. 2006 Dec 20;128(50):16040-1. doi: 10.1021/ja0664786.
Exposure of aldehydes or alpha-ketoesters to equal volumes of acetylene and hydrogen gas at ambient temperature and pressure in the presence of cationic rhodium catalysts provides products of carbonyl Z-butadienylation, which arise via multicomponent coupling of four molecules: two molecules of acetylene, a molecule of vicinal dicarbonyl compound, and a molecule of elemental hydrogen. The collective data suggest a catalytic mechanism involving carbonyl insertion into a cationic rhodacyclopentadiene intermediate derived via oxidative dimerization of acetylene. Hydrogenolytic cleavage of the resulting oxarhodacycloheptadiene via formal sigma-bond metathesis provides the product of carbonyl addition and cationic rhodium(I) to close the catalytic cycle. Studies involving the hydrogenation of 1,6-diyne 14a in the presence of alpha-ketoester 6a corroborate the proposed catalytic mechanism. These multicomponent couplings represent the first use of acetylene gas, a basic chemical feedstock, in metal-catalyzed reductive C-C bond formation.
在阳离子铑催化剂存在下,醛或α-酮酯在常温常压下与等体积的乙炔和氢气反应,生成羰基Z-丁二烯化产物,该产物通过四个分子的多组分偶联产生:两个乙炔分子、一个邻位二羰基化合物分子和一个元素氢分子。综合数据表明,催化机理涉及羰基插入通过乙炔氧化二聚得到的阳离子铑环戊二烯中间体。通过形式上的σ键复分解对所得氧杂铑环庚二烯进行氢解裂解,得到羰基加成产物和阳离子铑(I),从而完成催化循环。在α-酮酯6a存在下对1,6-二炔14a进行氢化的研究证实了所提出的催化机理。这些多组分偶联代表了基本化学原料乙炔气体在金属催化的还原性C-C键形成中的首次应用。