Pasinetti P M, Romá F, Riccardo J L, Ramirez-Pastor A J
Departamento de Física, Universidad Nacional de San Luis, CONICET, Chacabuco 917, 5700 San Luis, Argentina.
J Chem Phys. 2006 Dec 7;125(21):214705. doi: 10.1063/1.2397682.
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) w(L), interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) w(T), interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (w(T)>0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters k(B)Tw(T) (being k(B) the Boltzmann constant) and w(L)w(T). For w(L)w(T)=0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known ([square root] 3 x [square root] 3) [([square root] 3 x ([square root] 3)()] ordered phase is found at low temperatures and a coverage, theta, of 13. In the more general case (w(L)/w(T) not equal 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the ([square root] 3 x ([square root] 3) and (([square root] 3 x ([square root] 3)() structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, T(c), which presents an interesting dependence with w(L)/w(T). The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Roma et al., Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.
已经进行了蒙特卡罗模拟和有限尺寸标度分析,以研究吸附在呈三角形横截面结构排列的一维通道上的相互作用单体的亚单层晶格气体中的临界行为。考虑了两种横向相互作用能:(1)w(L),沿单个通道吸附的最近邻粒子之间的相互作用能;(2)w(T),跨最近邻通道吸附的粒子之间的相互作用能。我们关注排斥性横向相互作用(w(T)>0)的情况,其中根据参数k(B)Tw(T)(k(B)为玻尔兹曼常数)和w(L)/w(T)的值,在吸附层中观察到丰富多样的结构有序性。对于w(L)/w(T)=0,连续平面不相关,系统等效于三角形晶格,并且在低温和覆盖率θ为1/3时发现了著名的([√3×√3])[(√3×(√3)())]有序相。在更一般的情况(w(L)/w(T)≠0)下,沿单个通道的相互作用与相邻通道中位点之间的横向耦合之间的竞争导致三维吸附层。因此,([√3×(√3)]和((√3×(√3)())结构“沿通道传播”,并且在吸附层中出现新的有序相。每个有序相通过在临界温度T(c)处发生的连续有序-无序相变与无序状态分开,T(c)呈现出与w(L)/w(T)的有趣依赖关系。蒙特卡罗技术与最近报道的自由能最小化准则方法(FEMCA)[F. Roma等人,《物理评论B》68,205407(2003)]相结合,以预测有序-无序转变的临界温度。模拟数据与FEMCA结果之间的出色定性一致性使我们能够解释所观察到的转变背后机制的物理意义。