Suppr超能文献

来自野生醋栗番茄的赋予对根结线虫热稳定抗性的Mi-9基因是Mi-1的同源基因。

The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1.

作者信息

Jablonska Barbara, Ammiraju Jetty S S, Bhattarai Kishor K, Mantelin Sophie, Martinez de Ilarduya Oscar, Roberts Philip A, Kaloshian Isgouhi

机构信息

Department of Nematology, University of California, Riverside, California 92521, USA.

出版信息

Plant Physiol. 2007 Feb;143(2):1044-54. doi: 10.1104/pp.106.089615. Epub 2006 Dec 15.

Abstract

Resistance conferred by the Mi-1 gene from Solanum peruvianum is effective and widely used for limiting root-knot nematode (Meloidogyne spp.) yield loss in tomato (Solanum lycopersicum), but the resistance is ineffective at soil temperatures above 28 degrees C. Previously, we mapped the heat-stable resistance gene Mi-9 in Solanum arcanum accession LA2157 to the short arm of chromosome 6, in a genetic interval as Mi-1 and the Cladosporium fulvum resistance gene Cf2. We developed a fine map of the Mi-9 region by resistance and marker screening of an F2 population and derived F3 families from resistant LA2157 x susceptible LA392. Mi-1 intron 1 flanking primers were designed to amplify intron 1 and fingerprint Mi-1 homologs. Using these primers, we identified seven Mi-1 homologs in the mapping parents. Cf-2 and Mi-1 homologs were mapped on chromosome 6 using a subset of the F2. Cf-2 homologs did not segregate with Mi-9 resistance, but three Mi-1 homologs (RH1, RH2, and RH4) from LA2157 and one (SH1) from LA392 colocalized to the Mi-9 region. Reverse transcriptase-polymerase chain reaction analysis indicated that six Mi-1 homologs are expressed in LA2157 roots. We targeted transcripts of Mi-1 homologs for degradation with tobacco (Nicotiana tabacum) rattle virus (TRV)-based virus-induced gene silencing using Agrobacterium infiltration with a TRV-Mi construct. In most LA2157 plants infiltrated with the TRV-Mi construct, Mi-9-mediated heat-stable root-knot nematode resistance was compromised at 32 degrees C, indicating that the heat-stable resistance is mediated by a homolog of Mi-1.

摘要

来自秘鲁番茄(Solanum peruvianum)的Mi-1基因所赋予的抗性有效,并且被广泛用于限制番茄(Solanum lycopersicum)中根结线虫(Meloidogyne spp.)造成的产量损失,但该抗性在土壤温度高于28摄氏度时无效。此前,我们将野生番茄(Solanum arcanum)种质LA2157中的热稳定抗性基因Mi-9定位到6号染色体短臂上,其遗传区间与Mi-1和抗叶霉病基因Cf2相同。我们通过对F2群体进行抗性和标记筛选,并从抗性的LA2157与感病的LA392杂交得到的F3家系中,构建了Mi-9区域的精细图谱。设计Mi-1内含子1侧翼引物来扩增内含子1并对Mi-1同源基因进行指纹分析。利用这些引物,我们在作图亲本中鉴定出7个Mi-1同源基因。使用F2的一个子集将Cf-2和Mi-1同源基因定位到6号染色体上。Cf-2同源基因与Mi-9抗性不发生分离,但来自LA2157的3个Mi-1同源基因(RH1、RH2和RH4)以及来自LA392的1个(SH1)与Mi-9区域共定位。逆转录聚合酶链反应分析表明,6个Mi-1同源基因在LA2157根中表达。我们利用基于烟草(Nicotiana tabacum)脆裂病毒(TRV)的病毒诱导基因沉默技术,通过农杆菌浸润携带TRV-Mi构建体,靶向降解Mi-1同源基因的转录本。在大多数用TRV-Mi构建体浸润的LA2157植株中,Mi-9介导的热稳定根结线虫抗性在32摄氏度时受到损害,这表明热稳定抗性是由Mi-1的一个同源基因介导的。

相似文献

1
The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1.
Plant Physiol. 2007 Feb;143(2):1044-54. doi: 10.1104/pp.106.089615. Epub 2006 Dec 15.
3
The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6.
Theor Appl Genet. 2003 Feb;106(3):478-84. doi: 10.1007/s00122-002-1106-y. Epub 2002 Oct 23.
6
The MI-1-mediated pest resistance requires Hsp90 and Sgt1.
Plant Physiol. 2007 May;144(1):312-23. doi: 10.1104/pp.107.097246. Epub 2007 Mar 9.
8
The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato.
Plant J. 2011 Aug;67(3):459-71. doi: 10.1111/j.1365-313X.2011.04609.x. Epub 2011 Jun 6.
9
Evolution of nematode-resistant Mi-1 gene homologs in three species of Solanum.
Mol Genet Genomics. 2011 Mar;285(3):207-18. doi: 10.1007/s00438-010-0596-6. Epub 2011 Jan 5.

引用本文的文献

1
Responses of root physiological characteristics and resistance gene expression to infection by at different temperatures in tobacco.
Front Plant Sci. 2025 Jul 21;16:1592335. doi: 10.3389/fpls.2025.1592335. eCollection 2025.
2
Combating Root-Knot Nematodes ( spp.): From Molecular Mechanisms to Resistant Crops.
Plants (Basel). 2025 Apr 27;14(9):1321. doi: 10.3390/plants14091321.
3
Impaired condensate formation is to blame for failed disease resistance in plants.
Life Metab. 2022 Sep 1;1(2):105-106. doi: 10.1093/lifemeta/loac020. eCollection 2022 Oct.
4
Heat Stress and Plant-Biotic Interactions: Advances and Perspectives.
Plants (Basel). 2024 Jul 23;13(15):2022. doi: 10.3390/plants13152022.
6
Syncytium Induced by Plant-Parasitic Nematodes.
Results Probl Cell Differ. 2024;71:371-403. doi: 10.1007/978-3-031-37936-9_18.
7
Mapping of the gene in tomato conferring resistance to root-knot nematodes at high soil temperature.
Front Plant Sci. 2023 Oct 10;14:1267399. doi: 10.3389/fpls.2023.1267399. eCollection 2023.
9
Transcription Factor Assists Xinjiang Wild Myrobalan Plum () Disease Resistance Protein to Resist .
Plants (Basel). 2021 Jul 29;10(8):1561. doi: 10.3390/plants10081561.

本文引用的文献

2
Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1.
Theor Appl Genet. 1994 May;88(2):141-6. doi: 10.1007/BF00225889.
3
Mapping a new nematode resistance locus in Lycopersicon peruvianum.
Theor Appl Genet. 1995 Aug;91(3):457-64. doi: 10.1007/BF00222973.
5
Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex.
Theor Appl Genet. 1996 Oct;93(5-6):894-901. doi: 10.1007/BF00224091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验