Suppr超能文献

溶液pH值会改变磷脂酰胆碱膜的力学和电学性质:界面静电、膜内电位与弯曲弹性之间的关系。

Solution pH alters mechanical and electrical properties of phosphatidylcholine membranes: relation between interfacial electrostatics, intramembrane potential, and bending elasticity.

作者信息

Zhou Yong, Raphael Robert M

机构信息

Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA.

出版信息

Biophys J. 2007 Apr 1;92(7):2451-62. doi: 10.1529/biophysj.106.096362. Epub 2006 Dec 15.

Abstract

Solution pH affects numerous biological processes and some biological membranes are exposed to extreme pH environments. We utilized micropipette aspiration of giant unilamellar vesicles composed of 1-stearoyl-2-oleoyl-phosphatidylcholine to characterize the effect of solution pH (2-9) on membrane mechanical properties. The elastic area compressibility modulus was unaffected between pH 3 and 9 but was reduced by approximately 30% at pH 2. Fluorescence experiments utilizing the phase-sensitive probe Laurdan confirmed gel-phase characteristics at pH 2, explaining the reduction of membrane elasticity. The membrane bending stiffness, kc, increased by approximately 40% at pH 4 and pH 9 over the control value at pH 6.5. Electrophoretic mobility measurements indicate that these changes are qualitatively consistent with theoretical models that predict the effect of membrane surface charge density and Debye length on kc, substantiating a coupling between the mechanical and interfacial electrical properties of the membrane. The effect of pH on intramembrane electrical properties was examined by studying the spectral shifts of the potentiometric probe di-8 ANEPPS. The intramembrane (dipole) potential (Psid) increased linearly as the solution pH decreased in a manner consistent with the partitioning of hydroxide ions into the membrane. However, changes in Psid did not correlate with changes in kc. These mechanical and electrical studies lead to the conclusion that the effect of pH on membrane bending stiffness results from alterations in interfacial, as opposed to intramembrane, electrostatics.

摘要

溶液的pH值会影响众多生物过程,并且一些生物膜会暴露于极端pH环境中。我们利用微量移液器抽吸由1-硬脂酰-2-油酰磷脂酰胆碱组成的巨型单层囊泡,以表征溶液pH值(2 - 9)对膜力学性能的影响。弹性面积压缩模量在pH值为3至9之间不受影响,但在pH值为2时降低了约30%。利用相敏探针劳丹(Laurdan)进行的荧光实验证实了在pH值为2时的凝胶相特性,这解释了膜弹性的降低。膜弯曲刚度kc在pH值为4和pH值为9时比pH值为6.5时的对照值增加了约40%。电泳迁移率测量表明,这些变化在定性上与预测膜表面电荷密度和德拜长度对kc影响的理论模型一致,证实了膜的力学性质和界面电学性质之间的耦合。通过研究电位探针di - 8 ANEPPS的光谱位移来考察pH值对膜内电学性质的影响。膜内(偶极)电位(Psid)随着溶液pH值的降低呈线性增加,其方式与氢氧根离子在膜中的分配一致。然而,Psid的变化与kc的变化不相关。这些力学和电学研究得出结论,pH值对膜弯曲刚度的影响是由界面静电而非膜内静电的改变引起的。

相似文献

3
Universal behavior of membranes with sterols.
Biophys J. 2006 Mar 1;90(5):1639-49. doi: 10.1529/biophysj.105.067652. Epub 2005 Dec 2.
4
Measurement of membrane elasticity by micro-pipette aspiration.
Eur Phys J E Soft Matter. 2004 Jun;14(2):149-67. doi: 10.1140/epje/i2003-10146-y.
5
Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes.
Biophys J. 2005 Sep;89(3):1789-801. doi: 10.1529/biophysj.104.054510. Epub 2005 Jun 10.
6
Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.
Chem Phys Lipids. 2014 Feb;178:52-62. doi: 10.1016/j.chemphyslip.2013.11.009. Epub 2013 Dec 2.
7
Bilayer membrane bending stiffness by tether formation from mixed PC-PS lipid vesicles.
J Biomech Eng. 1990 Aug;112(3):235-40. doi: 10.1115/1.2891178.
8
Thermodynamics of membrane elasticity--a molecular level approach to one- and two-component fluid amphiphilic membranes, part II: applications.
Eur Phys J E Soft Matter. 2005 Feb;16(2):125-39. doi: 10.1140/epje/e2005-00014-1. Epub 2005 Feb 22.
9
Charged lipid vesicles: effects of salts on bending rigidity, stability, and size.
Biophys J. 2004 Dec;87(6):3882-93. doi: 10.1529/biophysj.103.036772. Epub 2004 Sep 17.
10
Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011903. doi: 10.1103/PhysRevE.76.011903. Epub 2007 Jul 11.

引用本文的文献

1
Fluorescent Rhein-Loaded Liposomes for In Vivo Biodistribution Study.
Pharmaceutics. 2025 Feb 27;17(3):307. doi: 10.3390/pharmaceutics17030307.
2
A New Cell Line from the Brain of Red Hybrid Tilapia ( spp.) for Tilapia Lake Virus Propagation.
Animals (Basel). 2024 May 22;14(11):1522. doi: 10.3390/ani14111522.
3
Physical Chemistry of Chloroquine Permeation through the Cell Membrane with Atomistic Detail.
J Chem Inf Model. 2023 Nov 27;63(22):7124-7132. doi: 10.1021/acs.jcim.3c01363. Epub 2023 Nov 10.
6
Heterosynaptic plasticity in biomembrane memristors controlled by pH.
MRS Bull. 2023;48(1):13-21. doi: 10.1557/s43577-022-00344-z. Epub 2022 Aug 29.
7
Tuning the Extracellular Vesicles Membrane through Fusion for Biomedical Applications.
J Funct Biomater. 2023 Feb 19;14(2):117. doi: 10.3390/jfb14020117.
9
Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances.
Polymers (Basel). 2021 Nov 21;13(22):4030. doi: 10.3390/polym13224030.
10
A Ready-to-Use Metal-Supported Bilayer Lipid Membrane Biosensor for the Detection of Phenol in Water.
Membranes (Basel). 2021 Nov 12;11(11):871. doi: 10.3390/membranes11110871.

本文引用的文献

1
Salt screening and specific ion adsorption determine neutral-lipid membrane interactions.
Proc Natl Acad Sci U S A. 2006 May 23;103(21):7982-7. doi: 10.1073/pnas.0509967103. Epub 2006 May 15.
2
Cholesterol effect on the dipole potential of lipid membranes.
Biophys J. 2006 Jun 1;90(11):4060-70. doi: 10.1529/biophysj.105.074666. Epub 2006 Mar 2.
3
Electromechanical effects on tether formation from lipid membranes: a theoretical analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041926. doi: 10.1103/PhysRevE.72.041926. Epub 2005 Oct 25.
4
Swelling of phospholipids by monovalent salt.
J Lipid Res. 2006 Feb;47(2):302-9. doi: 10.1194/jlr.M500401-JLR200. Epub 2005 Nov 2.
7
PH effects on drug interactions with lipid bilayers by liposome electrokinetic chromatography.
J Chromatogr A. 2005 Jun 24;1079(1-2):307-16. doi: 10.1016/j.chroma.2005.04.008.
8
Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes.
Biophys J. 2005 Sep;89(3):1789-801. doi: 10.1529/biophysj.104.054510. Epub 2005 Jun 10.
9
pH-dependent domain formation in phosphatidylinositol polyphosphate/phosphatidylcholine mixed vesicles.
J Lipid Res. 2005 Mar;46(3):504-15. doi: 10.1194/jlr.M400367-JLR200. Epub 2004 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验