Suppr超能文献

HGC1表达的时空控制导致Hgc1定位于白色念珠菌菌丝的顶端细胞。

Temporal and spatial control of HGC1 expression results in Hgc1 localization to the apical cells of hyphae in Candida albicans.

作者信息

Wang Allen, Lane Shelley, Tian Zhen, Sharon Amir, Hazan Idit, Liu Haoping

机构信息

Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA.

出版信息

Eukaryot Cell. 2007 Feb;6(2):253-61. doi: 10.1128/EC.00380-06. Epub 2006 Dec 15.

Abstract

The human fungal pathogen Candida albicans can undergo a morphological transition from a unicellular yeast growth form to a multicellular hyphal growth form. During hyphal growth, cell division is asymmetric. Only the apical cell divides, whereas subapical cells remain in G(1), and cell surface growth is highly restricted to the tip of the apical cell. Hgc1, a hypha-specific, G(1) cyclin-like protein, is essential for hyphal development. Here, we report, using indirect immunofluorescence, that Hgc1 is preferentially localized to the dividing apical cells of hyphae. Hgc1 protein is rapidly degraded in a cell cycle-independent manner, and the protein turnover likely occurs in both the apical and the subapical cells of hyphae. In addition to rapid protein turnover, the HGC1 transcript is also dynamically regulated during cell cycle progression in hyphal growth. It is induced upon germ tube formation in early G(1); the transcript level is reduced during the G(1)/S transition and peaks again around the G(2)/M phase in the subsequent cell cycles. Transcription from the HGC1 promoter is essential for its apical cell localization, as Hgc1 no longer exhibits preferential apical localization when expressed under the MAL2 promoter. Using fluorescence in situ hybridization, the HGC1 transcript is detected only in the apical cells of hyphae, suggesting that HGC1 is transcribed in the apical cell. Therefore, the preferential localization of Hgc1 to the apical cells of hyphae results from the dynamic temporal and spatial control of HGC1 expression.

摘要

人类真菌病原体白色念珠菌能够经历从单细胞酵母生长形式到多细胞菌丝生长形式的形态转变。在菌丝生长过程中,细胞分裂是不对称的。只有顶端细胞进行分裂,而顶端以下的细胞停留在G1期,并且细胞表面生长高度局限于顶端细胞的尖端。Hgc1是一种菌丝特异性的、类似G1期细胞周期蛋白的蛋白质,对菌丝发育至关重要。在此,我们通过间接免疫荧光报告称,Hgc1优先定位于菌丝的分裂顶端细胞。Hgc1蛋白以一种不依赖细胞周期的方式迅速降解,并且蛋白质周转可能发生在菌丝的顶端和顶端以下细胞中。除了快速的蛋白质周转外,HGC1转录本在菌丝生长的细胞周期进程中也受到动态调控。它在G1期早期芽管形成时被诱导;转录水平在G1/S期转换期间降低,并在随后的细胞周期中在G2/M期左右再次达到峰值。HGC1启动子的转录对于其在顶端细胞的定位至关重要,因为当在MAL2启动子下表达时,Hgc1不再表现出优先的顶端定位。使用荧光原位杂交技术,仅在菌丝的顶端细胞中检测到HGC1转录本,这表明HGC1在顶端细胞中被转录。因此,Hgc1在菌丝顶端细胞中的优先定位是由HGC1表达的动态时空控制所导致的。

相似文献

2
Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
EMBO J. 2004 Apr 21;23(8):1845-56. doi: 10.1038/sj.emboj.7600195. Epub 2004 Apr 8.
4
Hgc1 Independence of Biofilm Hyphae in Candida albicans.
mBio. 2023 Apr 25;14(2):e0349822. doi: 10.1128/mbio.03498-22. Epub 2023 Feb 13.
6
Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?
J Microbiol. 2016 Mar;54(3):170-7. doi: 10.1007/s12275-016-5550-9. Epub 2016 Feb 27.
7
Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
Mol Cell Biol. 2009 Aug;29(16):4406-16. doi: 10.1128/MCB.01502-08. Epub 2009 Jun 15.
8
Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans.
G3 (Bethesda). 2023 Aug 30;13(9). doi: 10.1093/g3journal/jkad151.
9
Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans.
Eukaryot Cell. 2005 Jan;4(1):95-102. doi: 10.1128/EC.4.1.95-102.2005.
10
Regulation of the Hypha-Inducing Transcription Factor Ume6 by the CDK1 Cyclins Cln3 and Hgc1.
mSphere. 2017 Mar 8;2(2). doi: 10.1128/mSphere.00248-16. eCollection 2017 Mar-Apr.

引用本文的文献

2
Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?
J Microbiol. 2016 Mar;54(3):170-7. doi: 10.1007/s12275-016-5550-9. Epub 2016 Feb 27.
3
Function and Regulation of Cph2 in Candida albicans.
Eukaryot Cell. 2015 Nov;14(11):1114-26. doi: 10.1128/EC.00102-15. Epub 2015 Sep 4.
5
Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans.
Mycopathologia. 2013 Dec;176(5-6):329-35. doi: 10.1007/s11046-013-9684-6. Epub 2013 Sep 4.
7
8
Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3.
Mol Microbiol. 2011 Aug;81(4):1078-91. doi: 10.1111/j.1365-2958.2011.07754.x. Epub 2011 Jul 12.
10
Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes.
Mol Cell Biol. 2009 Aug;29(16):4406-16. doi: 10.1128/MCB.01502-08. Epub 2009 Jun 15.

本文引用的文献

1
The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans.
Mol Microbiol. 2006 Oct;62(1):212-26. doi: 10.1111/j.1365-2958.2006.05361.x.
4
The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis.
Fungal Genet Biol. 2006 Aug;43(8):573-82. doi: 10.1016/j.fgb.2006.03.004. Epub 2006 May 26.
6
The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans.
J Cell Sci. 2006 Mar 15;119(Pt 6):1130-43. doi: 10.1242/jcs.02820. Epub 2006 Feb 28.
7
The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
Mol Biol Cell. 2006 Jan;17(1):295-307. doi: 10.1091/mbc.e05-06-0502. Epub 2005 Nov 2.
8
Ras1-induced hyphal development in Candida albicans requires the formin Bni1.
Eukaryot Cell. 2005 Oct;4(10):1712-24. doi: 10.1128/EC.4.10.1712-1724.2005.
9
Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans.
Mol Microbiol. 2005 Aug;57(4):942-59. doi: 10.1111/j.1365-2958.2005.04727.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验