Crampin Helen, Finley Kenneth, Gerami-Nejad Maryam, Court Helen, Gale Cheryl, Berman Judith, Sudbery Peter
Department of Molecular Biology and Biotechnology, Sheffield University, Western Bank, Sheffield, S10 2TN, UK.
J Cell Sci. 2005 Jul 1;118(Pt 13):2935-47. doi: 10.1242/jcs.02414.
Fungi grow with a variety of morphologies: oval yeast cells, chains of elongated cells called pseudohyphae and long, narrow, tube-like filaments called hyphae. In filamentous fungi, hyphal growth is strongly polarised to the tip and is mediated by the Spitzenkörper, which acts as a supply centre to concentrate the delivery of secretory vesicles to the tip. In the budding yeast Saccharomyces cerevisiae, polarised growth is mediated by the polarisome, a surface cap of proteins that nucleates the formation of actin cables delivering secretory vesicles to the growing tip. The human fungal pathogen, Candida albicans, can grow in all three morphological forms. Here we show the presence of a Spitzenkörper at the tip of C. albicans hyphae as a ball-like localisation of secretory vesicles, together with the formin Bni1 and Mlc1, an ortholog of an S. cerevisiae myosin regulatory light chain. In contrast, in C. albicans yeast cells, pseudohyphae and hyphae Spa2 and Bud6, orthologs of S. cerevisiae polarisome components, as well as the master morphology regulator Cdc42, localise predominantly, but not exclusively, to a surface cap resembling the polarisome of S. cerevisiae yeast cells. A small amount of Cdc42 also localises to the Spitzenkörper. Furthermore, we show differences in the genetic and cytoskeletal requirements, and cell cycle dynamics of polarity determinants in yeast, pseudohyphae and hyphae. These results, together with the cytological differences between the cell types, suggest that the Spitzenkörper and polarisome are distinct structures, that the polarisome and Spitzenkörper coexist in hyphae, and that polarised growth in hyphae is driven by a fundamentally different mechanism to that in yeast and pseudohyphae.
椭圆形酵母细胞、称为假菌丝的细长细胞链以及称为菌丝的长而窄的管状细丝。在丝状真菌中,菌丝生长强烈极化至顶端,由顶体介导,顶体作为一个供应中心,将分泌囊泡集中输送到顶端。在出芽酵母酿酒酵母中,极化生长由极化体介导,极化体是一种蛋白质表面帽,它促使肌动蛋白电缆形成,将分泌囊泡输送到生长的顶端。人类真菌病原体白色念珠菌可以以所有三种形态生长。在这里,我们展示了白色念珠菌菌丝顶端存在顶体,表现为分泌囊泡的球状定位,同时还有formin蛋白Bni1和Mlc1,后者是酿酒酵母肌球蛋白调节轻链的直系同源物。相比之下,在白色念珠菌酵母细胞、假菌丝和菌丝中,酿酒酵母极化体成分的直系同源物Spa2和Bud6,以及主要形态调节因子Cdc42,主要(但并非完全)定位于类似于酿酒酵母酵母细胞极化体的表面帽。少量的Cdc42也定位于顶体。此外,我们展示了酵母、假菌丝和菌丝中极性决定因素在遗传和细胞骨架需求以及细胞周期动力学方面的差异。这些结果,连同细胞类型之间的细胞学差异,表明顶体和极化体是不同的结构,极化体和顶体在菌丝中共存,并且菌丝中的极化生长由与酵母和假菌丝中根本不同的机制驱动。