Suppr超能文献

生殖与发育毒性危害识别的综合模型:II. 构建定量构效关系模型以预测未测试化学品的活性

A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals.

作者信息

Matthews Edwin J, Kruhlak Naomi L, Daniel Benz R, Ivanov Julian, Klopman Gilles, Contrera Joseph F

机构信息

US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD 20993-0002, USA.

出版信息

Regul Toxicol Pharmacol. 2007 Mar;47(2):136-55. doi: 10.1016/j.yrtph.2006.10.001. Epub 2006 Dec 18.

Abstract

This report describes the construction, optimization and validation of a battery of quantitative structure-activity relationship (QSAR) models to predict reproductive and developmental (reprotox) hazards of untested chemicals. These models run with MC4PC software to predict seven general reprotox classes: male and female reproductive toxicity, fetal dysmorphogenesis, functional toxicity, mortality, growth, and newborn behavioral toxicity. The reprotox QSARs incorporate a weight of evidence paradigm using rats, mice, and rabbit reprotox study data and are designed to identify trans-species reprotoxicants. The majority of the reprotox QSARs exhibit good predictive performance properties: high specificity (>80%), low false positives (<20%), significant receiver operating characteristic (ROC) values (>2.00), and high coverage (>80%) in 10% leave-many-out validation experiments. The QSARs are based on 627-2023 chemicals and exhibited a wide applicability domain for FDA regulated organic chemicals for which they were designed. Experiments were also performed using the MC4PC multiple module prediction technology, and ROC statistics, and adjustments to the ratio of active to inactive (A/I ratio) chemicals in training data sets were made to optimize the predictive performance of QSAR models. Results revealed that an A/I ratio of approximately 40% was optimal for MC4PC. We discuss specific recommendations for the application of the reprotox QSAR battery.

摘要

本报告描述了一系列定量构效关系(QSAR)模型的构建、优化和验证,以预测未经测试化学品的生殖和发育(生殖毒性)危害。这些模型使用MC4PC软件运行,以预测七个一般生殖毒性类别:雄性和雌性生殖毒性、胎儿畸形、功能毒性、死亡率、生长和新生动物行为毒性。生殖毒性QSAR采用证据权重范式,利用大鼠、小鼠和兔子的生殖毒性研究数据,旨在识别跨物种的生殖毒物。大多数生殖毒性QSAR表现出良好的预测性能:高特异性(>80%)、低假阳性率(<20%)、显著的受试者工作特征(ROC)值(>2.00),以及在10%留多法验证实验中的高覆盖率(>80%)。这些QSAR基于627 - 2023种化学品,对其设计的FDA监管有机化学品表现出广泛的适用范围。还使用MC4PC多模块预测技术和ROC统计进行了实验,并对训练数据集中活性与非活性(A/I比)化学品的比例进行了调整,以优化QSAR模型的预测性能。结果表明,对于MC4PC来说,约40%的A/I比是最佳的。我们讨论了生殖毒性QSAR电池应用的具体建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验