Davies Sean S, Brantley Eric J, Voziyan Paul A, Amarnath Venkataraman, Zagol-Ikapitte Irene, Boutaud Olivier, Hudson Billy G, Oates John A, Roberts L Jackson
Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
Biochemistry. 2006 Dec 26;45(51):15756-67. doi: 10.1021/bi061860g. Epub 2006 Dec 6.
Isoketals and levuglandins are highly reactive gamma-ketoaldehydes formed by oxygenation of arachidonic acid in settings of oxidative injury and cyclooxygenase activation, respectively. These compounds rapidly adduct to proteins via lysyl residues, which can alter protein structure/function. We examined whether pyridoxamine, which has been shown to scavenge alpha-ketoaldehydes formed by carbohydrate or lipid peroxidation, could also effectively protect proteins from the more reactive gamma-ketoaldehydes. Pyridoxamine prevented adduction of ovalbumin and also prevented inhibition of RNase A and glutathione reductase activity by the synthetic gamma-ketoaldehyde, 15-E2-isoketal. We identified the major products of the reaction of pyridoxamine with the 15-E2-isoketal, including a stable lactam adduct. Two lipophilic analogues of pyridoxamine, salicylamine and 5'-O-pentylpyridoxamine, also formed lactam adducts when reacted with 15-E2-isoketal. When we oxidized arachidonic acid in the presence of pyridoxamine or its analogues, pyridoxamine-isoketal adducts were found in significantly greater abundance than the pyridoxamine-N-acyl adducts formed by alpha-ketoaldehyde scavenging. Therefore, pyridoxamine and its analogues appear to preferentially scavenge gamma-ketoaldehydes. Both pyridoxamine and its lipophilic analogues inhibited the formation of lysyl-levuglandin adducts in platelets activated ex vivo with arachidonic acid. The two lipophilic pyridoxamine analogues provided significant protection against H2O2-mediated cytotoxicity in HepG2 cells. These results demonstrate the utility of pyridoxamine and lipophilic pyridoxamine analogues to assess the potential contributions of isoketals and levuglandins in oxidant injury and inflammation and suggest their potential utility as pharmaceutical agents in these conditions.
异前列腺素和左型前列腺素是分别在氧化损伤和环氧化酶激活的情况下,由花生四烯酸氧化形成的高反应性γ-酮醛。这些化合物通过赖氨酰残基迅速与蛋白质加合,这会改变蛋白质的结构/功能。我们研究了已被证明能清除由碳水化合物或脂质过氧化形成的α-酮醛的吡哆胺,是否也能有效保护蛋白质免受反应性更强的γ-酮醛的影响。吡哆胺可防止卵清蛋白的加合,还能防止合成的γ-酮醛15-E2-异前列腺素对核糖核酸酶A和谷胱甘肽还原酶活性的抑制。我们鉴定了吡哆胺与15-E2-异前列腺素反应的主要产物,包括一种稳定的内酰胺加合物。吡哆胺的两种亲脂性类似物水杨胺和5'-O-戊基吡哆胺与15-E2-异前列腺素反应时也形成了内酰胺加合物。当我们在吡哆胺或其类似物存在的情况下氧化花生四烯酸时,发现吡哆胺-异前列腺素加合物的丰度明显高于通过清除α-酮醛形成的吡哆胺-N-酰基加合物。因此,吡哆胺及其类似物似乎优先清除γ-酮醛。吡哆胺及其亲脂性类似物均抑制了用花生四烯酸体外激活的血小板中赖氨酰-左型前列腺素加合物的形成。这两种亲脂性吡哆胺类似物对H2O2介导的HepG2细胞毒性提供了显著保护。这些结果证明了吡哆胺和亲脂性吡哆胺类似物在评估异前列腺素和左型前列腺素在氧化损伤和炎症中的潜在作用方面的实用性,并表明它们在这些情况下作为药物的潜在用途。