Kahl J S, Nelson S J, Fernandez I, Haines T, Norton S, Wiersma G B, Jacobson G, Amirbahman A, Johnson K, Schauffler M, Rustad L, Tonnessen K, Lent R, Bank M, Elvir J, Eckhoff J, Caron H, Ruck P, Parker J, Campbell J, Manski D, Breen R, Sheehan K, Grygo A
University of Maine, Orono, ME, USA.
Environ Monit Assess. 2007 Mar;126(1-3):9-25. doi: 10.1007/s10661-006-9328-0. Epub 2006 Dec 16.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44 degrees 20' N latitude; 68 degrees 15' E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.
本文是对这一专门探讨阿卡迪亚国家公园(Acadia NP)流域研究的特刊的概述。这些论文阐述了关于美国阿卡迪亚国家公园(北纬44度20分;东经68度15分)两个高地流域的综合研究项目的组成部分。这些流域于1998年进行了仪器安装,为区域生态和流域研究提供长期基础。该研究作为美国环境保护局/国家公园管理局PRIMENet(公园研究与生态系统密集监测网络)的一部分启动,这是一个位于美国国家公园的紫外线监测站和长期流域研究站点系统。阿卡迪亚国家公园最初的目标是解决先前研究中提出的关于汞、酸雨和氮饱和的研究问题。项目设计基于1947年一场强烈野火在一个流域造成的森林和土壤的自然差异。在对照流域,几百年都没有火灾迹象。我们正在检验关于地表水化学控制以及对比流域中污染物生物有效性的假设。未燃烧的47公顷哈德洛克溪流域70%是云杉 - 冷杉成熟针叶林。相比之下,位于哈德洛克流域东北4公里处、面积32公顷的燃烧后的凯迪拉克溪流域,20%是正在再生的混合北方硬木林,60%是灌木/岩石秃地。大气沉降的差异主要受林分组成和年龄控制。这些流域设有测量站,并在122米(凯迪拉克)和137米(哈德洛克)处设有水化学监测站;流域最高海拔分别为468米和380米。溪水化学模式部分反映了强烈火灾的遗留影响,而这反过来又控制了森林植被和土壤特征的差异。这些因素导致未燃烧流域的氮和汞通量更高,这反映了大气沉降的差异、氮和汞的生态系统库的对比以及内部循环和生物有效性的推断差异。