Evers David C, Mason Robert P, Kamman Neil C, Chen Celia Y, Bogomolni Andrea L, Taylor David L, Hammerschmidt Chad R, Jones Stephen H, Burgess Neil M, Munney Kenneth, Parsons Katharine C
BioDiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038, USA.
Ecohealth. 2008 Dec;5(4):426-41. doi: 10.1007/s10393-008-0205-x. Epub 2009 Mar 18.
During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth's surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the U.S. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity.
在过去的一个世纪里,人类活动改变了汞(Hg)在地球表面的分布。通过协调管理、政策决策和法律法规,可以将此类对汞自然循环的改变所产生的影响降至最低。能够定量测量环境汞负荷及其在环境中归宿的时空趋势,对于基于科学的决策至关重要。在此,我们概述了一项针对北美大西洋沿岸温带河口和海洋生态系统的汞监测计划。该框架遵循了美国先前为淡水和陆地生态系统制定的类似计划。甲基汞(MeHg)是汞在毒理学上具有相关性的形式,其在生物体中生物累积以及在食物网中生物放大的能力取决于众多影响其产生、运输和归宿的生物和物理化学因素。因此,需要多个指标来全面表征环境中汞负荷的潜在变化以及甲基汞通过不同海洋食物网的生物累积情况。除了描述如何监测空气、沉积物和水中的环境汞负荷外,我们还概述了一个特定物种的生物指标矩阵,其中包括贝类和其他无脊椎动物、鱼类、鸟类和哺乳动物。这样的汞监测模板适用于北半球的沿海地区,并且可以推广到北极和热带海洋生态系统。我们认为,综合方法能够最有效地检测人类和生态健康方面汞的时空趋势,并同时识别受甲基汞毒性影响风险最大的食物网和物种。