Zhou Zhen, Zhao Jijun, Chen Zhongfang, von Ragué Schleyer Paul
Institute of New Energy Material Chemistry, Institute of Scientific Computing, Nankai University, Tianjin 300071, People's Republic of China.
J Phys Chem B. 2006 Dec 28;110(51):25678-85. doi: 10.1021/jp063257d.
The atomic and electronic structures of fluorinated BN nanotubes (BNNTs) were investigated by generalized gradient approximation (GGA) density functional theory (DFT). The reaction energies of F2 with pristine single-walled BNNTs to form fluorinated BNNTs are exothermic up to 50% coverage. At lower F coverages (below 50%), fluorines prefer external attachments to boron atoms and stay as far away as possible. At 50% F coverage, fluorines favor attachment to all the boron atoms of the outer surface energetically. Such preferable fluorination patterns and highly exothermic reaction energies hold true for double-walled (and multiwalled) BNNTs when the outer tube surface is considered. Fluorination transforms BNNTs into p-type semiconductors at low F coverages, while high F coverages convert BNNTs into p-type conductors. Therefore, the electronic and transport properties of BNNTs can be engineered by fluorination, and this provides potential applications for fluorinated BNNTs in nanoelectronics.
采用广义梯度近似(GGA)密度泛函理论(DFT)研究了氟化硼氮纳米管(BNNTs)的原子结构和电子结构。F2与原始单壁BNNTs反应形成氟化BNNTs的反应能量在覆盖率高达50%时是放热的。在较低的F覆盖率(低于50%)下,氟原子倾向于在硼原子外部附着,并尽可能保持远离。在F覆盖率为50%时,氟原子在能量上有利于附着在外表面的所有硼原子上。当考虑外管表面时,这种优选的氟化模式和高放热反应能量对于双壁(和多壁)BNNTs同样适用。在低F覆盖率下,氟化使BNNTs转变为p型半导体,而高F覆盖率则将BNNTs转变为p型导体。因此,BNNTs的电子和传输性质可以通过氟化来调控,这为氟化BNNTs在纳米电子学中的潜在应用提供了可能。