Morgan Deri, Cherny Vladimir V, Finnegan Alison, Bollinger James, Gelb Michael H, DeCoursey Thomas E
Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612 USA.
J Physiol. 2007 Mar 1;579(Pt 2):327-44. doi: 10.1113/jphysiol.2006.124248. Epub 2006 Dec 21.
The prevailing hypothesis that a signalling pathway involving cPLA(2)alpha is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA(2)alpha as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (I(e)) and enhanced proton channel gating identically in the presence or absence of three specific cPLA(2)alpha inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF(3) (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA(2)alpha gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA(2)alpha is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.
在人类嗜酸性粒细胞和小鼠粒细胞中测试了一种普遍的假说,即涉及胞质磷脂酶A2α(cPLA(2)α)的信号通路是增强与NADPH氧化酶相关的电压门控质子通道门控所必需的。该假说认为由cPLA(2)α释放的花生四烯酸(AA)是质子通道的最终激活剂。在穿孔膜片钳配置下研究的人类嗜酸性粒细胞中,佛波酯(PMA)刺激在存在或不存在三种特异性cPLA(2)α抑制剂(惠氏-1、吡咯烷-2和花生四烯酰三氟甲基酮(AACOCF(3)))的情况下,均能引发NADPH氧化酶产生的电子电流(I(e))并同等程度地增强质子通道门控。相比之下,蛋白激酶C(PKC)抑制剂GFX(GF109203X)或星形孢菌素可阻止质子通道或NADPH氧化酶的激活。呼吸爆发期间PKC抑制可逆转这两种分子的激活,表明持续的磷酸化是必需的。冈田酸可抑制GFX的这种作用,提示磷酸酶参与质子通道失活。AA对质子通道的激活被GFX或星形孢菌素部分逆转,表明AA的作用部分归因于PKC的激活。在cPLA(2)α基因敲除小鼠(基因敲除小鼠)的粒细胞中,PMA或fMetLeuPhe激活NADPH氧化酶和质子通道的方式与对照细胞的反应无明显差异。因此,cPLA(2)α对于激活质子传导或正常呼吸爆发并非必不可少。相反,质子通道或激活分子的磷酸化将通道转换为其激活的门控模式。必须修订现有的关于质子通道和NADPH氧化酶协同活性调节的范式。