Iwasaki Ken-ichi, Levine Benjamin D, Zhang Rong, Zuckerman Julie H, Pawelczyk James A, Diedrich André, Ertl Andrew C, Cox James F, Cooke William H, Giller Cole A, Ray Chester A, Lane Lynda D, Buckey Jay C, Baisch Friedhelm J, Eckberg Dwain L, Robertson David, Biaggioni Italo, Blomqvist C Gunnar
Institute for Exercise and Environmental Medicine, 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, USA.
J Physiol. 2007 Mar 15;579(Pt 3):799-810. doi: 10.1113/jphysiol.2006.119636. Epub 2006 Dec 21.
Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head-down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts approximately 72 and 23 days before, after 1 and 2 weeks in space (n = 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat-by-beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low- (0.02-0.07 Hz), low- (0.07-0.20 Hz) and high-frequency (0.20-0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P < 0.05, repeated measures ANOVA), but not during or after spaceflight. Absolute and percentage reductions of mean (+/- s.e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, -4 +/- 3 cm s(-1) after versus -14 +/- 3 cm s(-1) before, P = 0.001; and percentage, -8.0 +/- 4.8% after versus -24.8 +/- 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low-frequency gain decreased significantly (P < 0.05) by 26, 23 and 27% after 1 and 2 weeks in space and on landing day, respectively, compared with preflight values, which is also consistent with improved autoregulation. We conclude that human cerebral autoregulation is preserved, and possibly even improved, by short-duration spaceflight.
暴露于微重力环境会改变体液分布和颅脑血管的扩张程度,而这些变化反过来可能引发结构重塑并改变脑自动调节功能。在人体通过头低位卧床休息模拟失重状态后,已证实存在脑自动调节功能受损的情况,并且这被认为是导致航天后体位性不耐受的一种机制。在本研究中,我们验证了航天会损害脑自动调节功能这一假设。我们研究了6名宇航员,分别在航天前约72天和23天、在太空飞行1周和2周后(n = 4)、着陆日以及在为期16天的神经实验室航天飞机任务后的第1天进行观察。在5分钟的自主呼吸、模拟太空站立的30 mmHg下体负压以及在地球上60度被动直立倾斜10分钟期间,测量逐搏光电容积描记法测量的平均动脉压和经颅多普勒测量的大脑中动脉血流速度的变化。通过分析平均动脉压的自发变化与大脑动脉血流速度之间在极低频率(0.02 - 0.07 Hz)、低频率(0.07 - 0.20 Hz)和高频率(0.20 - 0.35 Hz)范围内的传递函数,对动态脑自动调节功能进行量化。在航天期间或之后,静息大脑中动脉血流速度与飞行前值相比无显著变化。在下体负压期间,航天前大脑血流速度显著降低(P < 0.05,重复测量方差分析),但在航天期间及之后未出现这种情况。在直立倾斜10分钟后,大脑血流速度的绝对降低值和降低百分比在航天后比航天前更小(绝对值,航天后为 - 4 ± 3 cm·s⁻¹,航天前为 - 14 ± 3 cm·s⁻¹,P = 0.001;百分比,航天后为 - 8.0 ± 4.8%,航天前为 - 24.8 ± 4.4%,P < 0.05),这与脑血流调节功能改善而非受损一致。与飞行前值相比,在太空飞行1周和2周后以及着陆日,低频增益分别显著降低(P < 0.05)26%、23%和27%,这也与自动调节功能改善一致。我们得出结论,短期航天可使人体脑自动调节功能得以保留,甚至可能得到改善。