Suppr超能文献

果蝇中模式化管状分支的遗传调控。

Genetic regulation of patterned tubular branching in Drosophila.

作者信息

Hatton-Ellis E, Ainsworth C, Sushama Y, Wan S, VijayRaghavan K, Skaer H

机构信息

Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):169-74. doi: 10.1073/pnas.0606933104. Epub 2006 Dec 26.

Abstract

A common theme in organogenesis is the branching of epithelial tubes, for example in the lung, liver, or kidney. The later morphogenesis of these branched epithelia dictates the final form and function of the mature tissue. Epithelial branching requires the specification of branch cells, the eversion process itself, and, frequently, patterned morphogenesis to produce branches of specific shape and orientation. Using the branching of renal tubule primordia from the hindgut in Drosophila, we show that these aspects are coordinately regulated. Cell specification depends on Wnt signaling along the tubular gut and results in the spatially restricted coexpression of two transcription factors, Krüppel and Cut, in the hindgut, whose activity drives cells toward renal tubule fate. Significantly, these transcription factors also confer the competence to respond to a second signal; TGF-beta induces branching to form the four renal tubule buds. Differential activation of the TGF-beta pathway also patterns the tubules, resulting in the asymmetry in size and positioning that is characteristic of the two tubule pairs. High levels of TGF-beta promote the expression of Dorsocross1-3 and anterior tubule growth, whereas low levels allow the expression of the transcriptional repressor, Brinker, and thus promote posterior tubule identity. We show that patterning of the tubule primordium into two distinct pairs is critical for the eversion of tubule branches, as well as for their asymmetric morphogenesis.

摘要

器官发生中的一个常见主题是上皮管的分支,例如在肺、肝脏或肾脏中。这些分支上皮的后期形态发生决定了成熟组织的最终形式和功能。上皮分支需要分支细胞的特化、外翻过程本身,并且通常需要有模式的形态发生来产生特定形状和方向的分支。利用果蝇中后肠肾小管原基的分支,我们表明这些方面是协同调节的。细胞特化取决于沿管状肠道的Wnt信号传导,并导致后肠中两种转录因子Krüppel和Cut的空间受限共表达,其活性将细胞驱动向肾小管命运。重要的是,这些转录因子还赋予细胞对第二种信号作出反应的能力;TGF-β诱导分支形成四个肾小管芽。TGF-β途径的差异激活也使肾小管形成模式,导致两个肾小管对特有的大小和定位不对称。高水平的TGF-β促进Dorsocross1-3的表达和前肾小管生长,而低水平则允许转录抑制因子Brinker的表达,从而促进后肾小管特征。我们表明,将肾小管原基模式化为两个不同的对对于肾小管分支的外翻及其不对称形态发生至关重要。

相似文献

1
Genetic regulation of patterned tubular branching in Drosophila.
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):169-74. doi: 10.1073/pnas.0606933104. Epub 2006 Dec 26.
2
Coordinating cell fate and morphogenesis in Drosophila renal tubules.
Philos Trans R Soc Lond B Biol Sci. 2000 Jul 29;355(1399):931-7. doi: 10.1098/rstb.2000.0628.
3
Renal tubule development in Drosophila: a closer look at the cellular level.
J Am Soc Nephrol. 2005 Feb;16(2):322-8. doi: 10.1681/ASN.2004090729. Epub 2005 Jan 12.
5
It takes guts: the Drosophila hindgut as a model system for organogenesis.
Dev Biol. 2002 Mar 1;243(1):1-19. doi: 10.1006/dbio.2002.0577.
6
TGF-beta family signal transduction in Drosophila development: from Mad to Smads.
Dev Biol. 1999 Jun 15;210(2):251-68. doi: 10.1006/dbio.1999.9282.
7
Branching morphogenesis of the Drosophila tracheal system.
Annu Rev Cell Dev Biol. 2003;19:623-47. doi: 10.1146/annurev.cellbio.19.031403.160043.
8
Transforming growth factor-beta selectively inhibits branching morphogenesis but not tubulogenesis.
Am J Physiol. 1997 Jan;272(1 Pt 2):F139-46. doi: 10.1152/ajprenal.1997.272.1.F139.
10
Genetic control of cell intercalation during tracheal morphogenesis in Drosophila.
Curr Biol. 2004 Dec 29;14(24):2197-207. doi: 10.1016/j.cub.2004.11.056.

引用本文的文献

1
The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation.
Biol Rev Camb Philos Soc. 2025 Apr;100(2):647-671. doi: 10.1111/brv.13156. Epub 2024 Oct 22.
3
Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae).
Genetica. 2024 Feb;152(1):1-9. doi: 10.1007/s10709-023-00201-0. Epub 2023 Dec 16.
4
Single-cell transcriptomics illuminates regulatory steps driving anterior-posterior patterning of Drosophila embryonic mesoderm.
Cell Rep. 2023 Oct 31;42(10):113289. doi: 10.1016/j.celrep.2023.113289. Epub 2023 Oct 19.
5
Early patterning followed by tissue growth establishes distal identity in Malpighian tubules.
Front Cell Dev Biol. 2022 Aug 19;10:947376. doi: 10.3389/fcell.2022.947376. eCollection 2022.
6
Drosophila melanogaster: a simple genetic model of kidney structure, function and disease.
Nat Rev Nephrol. 2022 Jul;18(7):417-434. doi: 10.1038/s41581-022-00561-4. Epub 2022 Apr 11.
7
Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands.
Insect Mol Biol. 2021 Apr;30(2):210-230. doi: 10.1111/imb.12689. Epub 2020 Dec 27.
8
Physiology, Development, and Disease Modeling in the Excretory System.
Genetics. 2020 Feb;214(2):235-264. doi: 10.1534/genetics.119.302289.
9
Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila.
Organogenesis. 2013 Jan-Mar;9(1):40-54. doi: 10.4161/org.24107. Epub 2013 Jan 1.
10
The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila.
Development. 2013 Mar;140(5):1100-10. doi: 10.1242/dev.088989.

本文引用的文献

1
Genes controlling posterior gut development in theDrosophila embryo.
Rouxs Arch Dev Biol. 1995 May;204(5):308-329. doi: 10.1007/BF02179500.
2
Clonal analysis of the blastoderm anlage of the Malpighian tubules in Drosophila melanogaster.
Rouxs Arch Dev Biol. 1986 Jan;195(1):22-32. doi: 10.1007/BF00444038.
3
[Developmental physiology and genetics of the lethal factor crc in Drosophila melanogaster].
Arch Julius Klaus Stift Vererbungsforsch Sozialanthropol Rassenhyg. 1945;20:209-56.
4
GDNF/Ret signaling and the development of the kidney.
Bioessays. 2006 Feb;28(2):117-27. doi: 10.1002/bies.20357.
6
Exogenous BMP-4 amplifies asymmetric ureteric branching in the developing mouse kidney in vitro.
Kidney Int. 2005 Feb;67(2):420-31. doi: 10.1111/j.1523-1755.2005.67098.x.
7
Recent genetic studies of mouse kidney development.
Curr Opin Genet Dev. 2004 Oct;14(5):550-7. doi: 10.1016/j.gde.2004.07.009.
8
Repression of primordial germ cell differentiation parallels germ line stem cell maintenance.
Curr Biol. 2004 Jun 8;14(11):981-6. doi: 10.1016/j.cub.2004.05.049.
9
Ureteric bud controls multiple steps in the conversion of mesenchyme to epithelia.
Semin Cell Dev Biol. 2003 Aug;14(4):209-16. doi: 10.1016/s1084-9521(03)00023-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验