Searl Timothy J, Silinsky Eugene M
Department of Molecular Pharmacology and Biological Chemistry, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA.
J Mol Neurosci. 2006;30(1-2):215-8. doi: 10.1385/JMN:30:1:215.
Inhibition of acetylcholine (ACh) release by adenosine is an important mechanism by which the secretory apparatus is regulated at both mammalian (Ginsborg and Hirst, 1972; Hirsh et al., 2002; Silinsky, 2004) and amphibian (Silinsky, 1980; Silinsky and Solsona, 1992; Redman and Silinsky, 1993, 1994; Robitaille et al., 1999) neuromuscular junctions (NMJs). ACh is known to be costored with ATP in cholinergic vesicles (Zimmermann, 1994), and it has been demonstrated that at amphibian NMJs, adenosine derived from neurally released ATPis the mediator of neuromuscular depression exhibited at low frequencies of nerve stimulation (Redman and Silinsky, 1994) (Fig. 1). At the mouse motor nerve ending the inhibitory actions of adenosine on transmitter release are linked to a reduction in the nerve-terminal calcium current associated with neurotransmitter release (Silinsky, 2004). In contrast, at the frog motor nerve, inhibition of ACh release by adenosine occurs in the absence of any effect on nerve-terminal calcium currents (Silinsky and Solsona, 1992; Redman and Silinsky, 1994; Robitaille et al., 1999). That is, at the frog NMJ adenosine inhibits ACh release through an effect on a process that takes place downstream from calcium entry. Although the exact site at which adenosine inhibits transmitter release is unknown, both the speed (50-100 ms; E. M. Silinsky, unpublished observations) and the stimulation-independent nature of inhibition suggest that this process must occur through an action on vesicles that are already primed and ready for release. Thus, the likely sites for mediating the action of adenosine are those core components of the neurotransmitter release process, the three SNARES (SNAP-25, syntaxin, and synaptobrevin), and synaptotagmin. However, there are difficulties in addressing which of these individual elements of the secretory apparatus might be involved in the actions of adenosine. We could use fractions of botulinum toxin to eliminate individual components of the secretory apparatus. However, each of these core components of the release machinery is individually essential for the neurotransmitter release process. Therefore, we decided to approach this problem by alternative means.
腺苷对乙酰胆碱(ACh)释放的抑制作用是一种重要机制,通过该机制,哺乳动物(金斯伯格和赫斯特,1972年;赫什等人,2002年;西林斯基,2004年)和两栖动物(西林斯基,1980年;西林斯基和索尔索纳,1992年;雷德曼和西林斯基,1993年、1994年;罗比塔耶等人,1999年)的神经肌肉接头(NMJs)处的分泌装置得到调节。已知ACh与ATP共同储存于胆碱能囊泡中(齐默尔曼,1994年),并且已经证明,在两栖动物的神经肌肉接头处,神经释放的ATP衍生的腺苷是低频神经刺激时出现的神经肌肉抑制的介质(雷德曼和西林斯基,1994年)(图1)。在小鼠运动神经末梢,腺苷对递质释放的抑制作用与神经末梢与神经递质释放相关联的钙电流的减少有关(西林斯基,2004年)。相比之下,在青蛙运动神经处,腺苷对ACh释放的抑制作用在对神经末梢钙电流没有任何影响的情况下发生(西林斯基和索尔索纳,1992年;雷德曼和西林斯基,1994年;罗比塔耶等人,1999年)。也就是说,在青蛙神经肌肉接头处,腺苷通过影响钙内流下游发生的过程来抑制ACh释放。尽管腺苷抑制递质释放的确切位点尚不清楚,但抑制的速度(50 - 100毫秒;E.M.西林斯基,未发表观察结果)和与刺激无关的性质表明,这个过程必定是通过对已经准备好释放的囊泡起作用而发生的。因此,介导腺苷作用的可能位点是神经递质释放过程的那些核心成分,即三种SNARE蛋白(SNAP - 25、 syntaxin和突触小泡蛋白)以及突触结合蛋白。然而,要确定分泌装置的这些单个元件中哪一个可能参与腺苷的作用存在困难。我们可以使用肉毒杆菌毒素的片段来消除分泌装置的单个成分。然而,释放机制的这些核心成分中的每一个对于神经递质释放过程都是必不可少的。因此,我们决定通过其他方法来解决这个问题。