Kjelstrup-Hansen Jakob, Hansen Ole, Rubahn Horst-Günter, Bøggild Peter
MIC-Department of Micro and Nanotechnology, Technical University of Denmark, Building 345 east, 2800 Kgs. Lyngby, Denmark.
Small. 2006 May;2(5):660-6. doi: 10.1002/smll.200500457.
Intrinsic elastic and inelastic mechanical properties of individual, self-assembled, quasi-single-crystalline para-hexaphenylene nanofibers supported on substrates with different hydrophobicities are investigated as well as the interplay between the fibers and the underlying substrates. We find from atomic-force-microscopy-based rupture experiments a rupture shear stress of about 2 x 10(7) Pa for an individual fiber. Deflecting a nanofiber suspended across a gap results in a Young's modulus of 0.65 GPa. Translational motion of intact nanofibers across the surface is demonstrated for fibers on a silicon substrate with a low-adhesion coating, whereas such motion on a noncoated substrate is limited to very short (sub-micrometer) nanofiber pieces due to strong adhesive forces.
研究了支撑在具有不同疏水性的基底上的单个自组装准单晶对亚苯基纳米纤维的本征弹性和非弹性力学性能,以及纤维与底层基底之间的相互作用。我们通过基于原子力显微镜的断裂实验发现,单个纤维的断裂剪应力约为2×10⁷ Pa。使横跨间隙悬挂的纳米纤维发生偏转,得到的杨氏模量为0.65 GPa。对于具有低附着力涂层的硅基底上的纤维,完整的纳米纤维在表面上的平移运动得到了证明,而在未涂层的基底上,由于强大的附着力,这种运动仅限于非常短(亚微米)的纳米纤维片段。