Wang Dayang, Li Jensen, Chan C T, Salgueiriño-Maceira Verónica, Liz-Marzán Luis M, Romanov Sergei, Caruso Frank
Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
Small. 2005 Jan;1(1):122-30. doi: 10.1002/smll.200400022.
Metallodielectric inverse opals were prepared by co-crystallizing silica-coated gold nanoparticles and polymer spheres, followed by removal of the crystal template. The inverse opals exhibit a distinct reflectance peak, which results from Bragg diffraction due to the highly ordered 3D macroporous structure. Photonic band-structure calculations indicate that the characteristic reflectance peaks observed are signatures of the directional gap at the L point. It is demonstrated that the optical properties (the position and magnitude of the electromagnetic bandgaps) of the gold-silica nanocomposite inverse opals can be engineered by varying the nanoparticle morphology (core size and shell thickness) and/or the nanoparticle volume-filling ratio of the composite. The use of metallodielectric nanoparticles to form inverse opals offers a versatile approach to prepare photonic materials that may exhibit absolute bandgaps.
通过使二氧化硅包覆的金纳米颗粒与聚合物球体共结晶,随后去除晶体模板,制备了金属 - 电介质反蛋白石结构。这些反蛋白石呈现出明显的反射峰,这是由于高度有序的三维大孔结构导致的布拉格衍射引起的。光子带结构计算表明,观察到的特征反射峰是L点处定向能隙的特征。结果表明,通过改变纳米颗粒形态(核尺寸和壳厚度)和/或复合材料中纳米颗粒的体积填充率,可以设计金 - 二氧化硅纳米复合反蛋白石的光学性质(电磁带隙的位置和大小)。使用金属 - 电介质纳米颗粒形成反蛋白石为制备可能呈现绝对带隙光子材料提供了一种通用方法。