Suppr超能文献

无乳链球菌这一全身性病原菌的多糖荚膜分析及其在毒力方面的意义。

Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence.

作者信息

Lowe Beth A, Miller Jesse D, Neely Melody N

机构信息

Wayne State School of Medicine, Department of Immunology and Microbiology, 540 E. Canfield, Detroit, MI 48201, USA.

出版信息

Infect Immun. 2007 Mar;75(3):1255-64. doi: 10.1128/IAI.01484-06. Epub 2006 Dec 28.

Abstract

Systemic pathogens have developed numerous strategies for evading the defenses of the host, permitting dissemination and multiplication in various tissues. One means of survival in the host, particularly in the bloodstream, has been attributed to the ability to avoid phagocytosis via capsular polysaccharide. To further define the virulence capacity of Streptococcus iniae, a zoonotic pathogen with the ability to cause severe systemic disease in both fish and humans, we performed an analysis of the capsule locus. The initial analysis included cloning and sequencing of the capsule synthesis operon, which revealed an approximately 21-kb region that is highly homologous to capsule operons of other streptococci. A genetic comparison of S. iniae virulent strain 9117 and commensal strain 9066 revealed that the commensal strain does not have the central region of the capsule operon composed of several important capsule synthesis genes. Four 9117 insertion or deletion mutants with mutations in the beginning, middle, or end of the capsule locus were analyzed to determine their capsule production and virulence. Virulence profiles were analyzed for each mutant using three separate criteria, which demonstrated the attenuation of each mutant in several tissue environments. These analyses also provided insight into the different responses of the host to each mutant strain compared to a wild-type infection. Our results demonstrate that capsule is not required for all host environments, while excess capsule is also not optimal, suggesting that for an "ideal" systemic infection, capsule production is most likely regulated while the bacterium is in different environments of the host.

摘要

全身性病原体已发展出多种策略来逃避宿主的防御,从而在各种组织中传播和繁殖。在宿主体内,尤其是在血液中生存的一种方式被认为是通过荚膜多糖来避免被吞噬。为了进一步确定海豚链球菌(一种人畜共患病原体,能够在鱼类和人类中引起严重的全身性疾病)的毒力,我们对荚膜基因座进行了分析。初步分析包括对荚膜合成操纵子的克隆和测序,结果显示一个约21 kb的区域与其他链球菌的荚膜操纵子高度同源。对海豚链球菌强毒株9117和共生株9066进行基因比较,发现共生株没有由几个重要荚膜合成基因组成的荚膜操纵子中央区域。分析了4个在荚膜基因座起始、中间或末端发生突变的9117插入或缺失突变体,以确定它们的荚膜产生情况和毒力。使用三个独立的标准对每个突变体的毒力谱进行了分析,结果表明每个突变体在几种组织环境中的毒力均有所减弱。这些分析还深入了解了与野生型感染相比,宿主对每个突变菌株的不同反应。我们的结果表明,并非所有宿主环境都需要荚膜,而过多的荚膜也并非最佳,这表明对于“理想的”全身性感染,荚膜产生很可能在细菌处于宿主的不同环境时受到调控。

相似文献

1
Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence.
Infect Immun. 2007 Mar;75(3):1255-64. doi: 10.1128/IAI.01484-06. Epub 2006 Dec 28.
2
Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish.
J Bacteriol. 2007 Feb;189(4):1279-87. doi: 10.1128/JB.01175-06. Epub 2006 Nov 10.
4
Capsule expression regulated by a two-component signal transduction system in Streptococcus iniae.
FEMS Immunol Med Microbiol. 2007 Aug;50(3):366-74. doi: 10.1111/j.1574-695X.2007.00261.x. Epub 2007 May 30.
6
Streptococcus iniae cpsG alters capsular carbohydrate composition and is a cause of serotype switching in vaccinated fish.
Vet Microbiol. 2016 Sep 25;193:116-24. doi: 10.1016/j.vetmic.2016.08.011. Epub 2016 Aug 17.
7
cpsJ gene of Streptococcus iniae is involved in capsular polysaccharide synthesis and virulence.
Antonie Van Leeuwenhoek. 2016 Nov;109(11):1483-1492. doi: 10.1007/s10482-016-0750-1. Epub 2016 Aug 17.
10
Sialylation of Streptococcus suis serotype 2 is essential for capsule expression but is not responsible for the main capsular epitope.
Microbes Infect. 2012 Sep;14(11):941-50. doi: 10.1016/j.micinf.2012.03.008. Epub 2012 Apr 5.

引用本文的文献

1
Identification and genetic engineering of pneumococcal capsule-like polysaccharides in commensal oral streptococci.
Microbiol Spectr. 2024 Apr 2;12(4):e0188523. doi: 10.1128/spectrum.01885-23. Epub 2024 Mar 15.
2
CRISPR-based screening of small RNA modulators of bile susceptibility in .
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2311323121. doi: 10.1073/pnas.2311323121. Epub 2024 Jan 31.
3
Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy.
Animals (Basel). 2022 Sep 16;12(18):2443. doi: 10.3390/ani12182443.
4
The LCP Family Protein, Psr, Is Required for Cell Wall Integrity and Virulence in .
Microorganisms. 2022 Jan 20;10(2):217. doi: 10.3390/microorganisms10020217.
6
Functional Analysis of Two Novel Virulence Factors Using a Zebrafish Infection Model.
Microorganisms. 2020 Sep 5;8(9):1361. doi: 10.3390/microorganisms8091361.
8
The Buoyancy of Is Affected by Capsule Size.
mSphere. 2018 Nov 7;3(6):e00534-18. doi: 10.1128/mSphere.00534-18.
9
Current Challenges of Infection and Effective Molecular, Cellular, and Environmental Control Methods in Aquaculture.
Mol Cells. 2018 Jun;41(6):495-505. doi: 10.14348/molcells.2018.2154. Epub 2018 May 10.

本文引用的文献

1
Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development.
Infect Immun. 2005 Oct;73(10):6935-44. doi: 10.1128/IAI.73.10.6935-6944.2005.
2
Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells.
Infect Immun. 2005 Aug;73(8):4653-67. doi: 10.1128/IAI.73.8.4653-4667.2005.
4
Zebrafish as a model host for streptococcal pathogenesis.
Acta Trop. 2004 Jun;91(1):53-68. doi: 10.1016/j.actatropica.2003.10.020.
6
MtaR, a regulator of methionine transport, is critical for survival of group B streptococcus in vivo.
J Bacteriol. 2003 Nov;185(22):6592-9. doi: 10.1128/JB.185.22.6592-6599.2003.
8
Streptococcus-zebrafish model of bacterial pathogenesis.
Infect Immun. 2002 Jul;70(7):3904-14. doi: 10.1128/IAI.70.7.3904-3914.2002.
10
Group B streptococcal disease in nonpregnant adults.
Clin Infect Dis. 2001 Aug 15;33(4):556-61. doi: 10.1086/322696. Epub 2001 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验