Nakata Maho, Braams Bastiaan J, Fukuda Mituhiro, Percus Jerome K, Yamashita Makoto, Zhao Zhengji
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Tokyo 113-8656, Japan.
J Chem Phys. 2006 Dec 28;125(24):244109. doi: 10.1063/1.2406073.
Calculations on small molecular systems indicate that the variational approach employing the two-particle reduced density matrix (2-RDM) as the basic unknown and applying the P, Q, G, T1, and T2 representability conditions provides an accuracy that is competitive with the best standard ab initio methods of quantum chemistry. However, in this paper we consider a simple class of Hamiltonians for which an exact ground state wave function can be written as a single Slater determinant and yet the same 2-RDM approach gives a drastically nonrepresentable result. This shows the need for stronger representability conditions than the mentioned ones.
对小分子体系的计算表明,以双粒子约化密度矩阵(2-RDM)为基本未知量并应用P、Q、G、T1和T2可表示性条件的变分方法所提供的精度,与量子化学中最佳的标准从头算方法相当。然而,在本文中,我们考虑了一类简单的哈密顿量,其精确的基态波函数可以写成单个斯莱特行列式,但相同的2-RDM方法却给出了完全不可表示的结果。这表明需要比上述条件更强的可表示性条件。