Suppr超能文献

霉酚酸在实体器官移植受者中的临床药代动力学和药效学

Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients.

作者信息

Staatz Christine E, Tett Susan E

机构信息

School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia.

出版信息

Clin Pharmacokinet. 2007;46(1):13-58. doi: 10.2165/00003088-200746010-00002.

Abstract

This review aims to provide an extensive overview of the literature on the clinical pharmacokinetics of mycophenolate in solid organ transplantation and a briefer summary of current pharmacodynamic information. Strategies are suggested for further optimisation of mycophenolate therapy and areas where additional research is warranted are highlighted. Mycophenolate has gained widespread acceptance as the antimetabolite immunosuppressant of choice in organ transplant regimens. Mycophenolic acid (MPA) is the active drug moiety. Currently, two mycophenolate compounds are available, mycophenolate mofetil and enteric-coated (EC) mycophenolate sodium. MPA is a potent, selective and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), leading to eventual arrest of T- and B-lymphocyte proliferation. Mycophenolate mofetil and EC-mycophenolate sodium are essentially completely hydrolysed to MPA by esterases in the gut wall, blood, liver and tissue. Oral bioavailability of MPA, subsequent to mycophenolate mofetil administration, ranges from 80.7% to 94%. EC-mycophenolate sodium has an absolute bioavailability of MPA of approximately 72%. MPA binds 97-99% to serum albumin in patients with normal renal and liver function. It is metabolised in the liver, gastrointestinal tract and kidney by uridine diphosphate gluconosyltransferases (UGTs). 7-O-MPA-glucuronide (MPAG) is the major metabolite of MPA. MPAG is usually present in the plasma at 20- to 100-fold higher concentrations than MPA, but it is not pharmacologically active. At least three minor metabolites are also formed, of which an acyl-glucuronide has pharmacological potency comparable to MPA. MPAG is excreted into the urine via active tubular secretion and into the bile by multi-drug resistance protein 2 (MRP-2). MPAG is de-conjugated back to MPA by gut bacteria and then reabsorbed in the colon. Mycophenolate mofetil and EC-mycophenolate sodium display linear pharmacokinetics. Following mycophenolate mofetil administration, MPA maximum concentration usually occurs in 1-2 hours. EC-mycophenolate sodium exhibits a median lag time in absorption of MPA from 0.25 to 1.25 hours. A secondary peak in the concentration-time profile of MPA, due to enterohepatic recirculation, often appears 6-12 hours after dosing. This contributes approximately 40% to the area under the plasma concentration-time curve (AUC). The mean elimination half-life of MPA ranges from 9 to 17 hours. MPA displays large between- and within-subject pharmacokinetic variability. Dose-normalised MPA AUC can vary more than 10-fold. Total MPA concentrations should be interpreted with caution in patients with severe renal impairment, liver disease and hypoalbuminaemia. In such individuals, MPA and MPAG plasma protein binding may be altered, changing the fraction of free MPA available. Apparent oral clearance (CL/F) of total MPA appears to increase in proportion to the increased free fraction, with a reduction in total MPA AUC. However, there may be little change in the MPA free concentration. Ciclosporin inhibits biliary excretion of MPAG by MRP-2, reducing enterohepatic recirculation of MPA. Exposure to MPA when mycophenolate mofetil is given in combination with ciclosporin is approximately 30-40% lower than when given alone or with tacrolimus or sirolimus. High dosages of corticosteroids may induce expression of UGT, reducing exposure to MPA. Other co-medications can interfere with the absorption, enterohepatic recycling and metabolism of mycophenolate. Most pharmacokinetic investigations of MPA have involved mycophenolate mofetil rather than EC-mycophenolate sodium therapy. In population pharmacokinetic studies, MPA CL/F in adults ranges from 14.1 to 34.9 L/h (ciclosporin co-therapy) and from 11.9 to 25.4 L/h (tacrolimus co-therapy). Patient bodyweight, serum albumin concentration and immunosuppressant co-therapy have a significant influence on CL/F. The majority of pharmacodynamic data on MPA have been obtained in patients receiving mycophenolate mofetil therapy in the first year after kidney transplantation. Low MPA AUC is associated with increased incidence of biopsy-proven acute rejection. Gastrointestinal adverse events may be dose related. Leukopenia and anaemia have been associated with high MPA AUC, trough concentration and metabolite concentrations in some, but not all, studies. High free MPA exposure has been identified as a risk factor for leukopenia in some investigations. Targeting a total MPA AUC from 0 to 12 hours (AUC12) of 30-60 mg.hr/L is likely to minimise the risk of acute rejection and may reduce toxicity. IMPDH monitoring is in the early experimental stage. Individualisation of mycophenolate therapy should lead to improved patient outcomes. MPA AUC12 appears to be the most useful exposure measure for such individualisation. Limited sampling strategies and Bayesian forecasting are practical means of estimating MPA AUC12 without full concentration-time profiling. Target concentration intervention may be particularly useful in the first few months post-transplant and prior to major changes in anti-rejection therapy. In patients with impaired renal or hepatic function or hypoalbuminaemia, free drug measurement could be valuable in further interpretation of MPA exposure.

摘要

本综述旨在全面概述有关霉酚酸酯在实体器官移植中临床药代动力学的文献,并简要总结当前的药效学信息。文中提出了进一步优化霉酚酸酯治疗的策略,并强调了需要开展更多研究的领域。霉酚酸酯已被广泛认可为器官移植方案中首选的抗代谢物免疫抑制剂。霉酚酸(MPA)是其活性药物成分。目前有两种霉酚酸酯化合物可供使用,即霉酚酸酯和肠溶包衣(EC)的霉酚酸钠。MPA是肌苷单磷酸脱氢酶(IMPDH)的强效、选择性和可逆抑制剂,最终导致T淋巴细胞和B淋巴细胞增殖停止。霉酚酸酯和EC - 霉酚酸钠在肠壁、血液、肝脏和组织中基本上被酯酶完全水解为MPA。服用霉酚酸酯后,MPA的口服生物利用度为80.7%至94%。EC - 霉酚酸钠中MPA的绝对生物利用度约为72%。在肝肾功能正常的患者中,MPA与血清白蛋白的结合率为97 - 99%。它在肝脏、胃肠道和肾脏中通过尿苷二磷酸葡萄糖醛酸转移酶(UGTs)进行代谢。7 - O - MPA - 葡萄糖醛酸苷(MPAG)是MPA的主要代谢产物。MPAG在血浆中的浓度通常比MPA高20至100倍,但它没有药理活性。至少还会形成三种次要代谢产物,其中一种酰基葡萄糖醛酸苷具有与MPA相当的药理活性。MPAG通过肾小管主动分泌排泄到尿液中,并通过多药耐药蛋白2(MRP - 2)排泄到胆汁中。MPAG被肠道细菌去结合变回MPA,然后在结肠中重新吸收。霉酚酸酯和EC - 霉酚酸钠呈现线性药代动力学。服用霉酚酸酯后,MPA通常在1 - 2小时内达到最高浓度。EC - 霉酚酸钠中MPA吸收的中位滞后时间为0.25至1.25小时。由于肠肝循环,MPA浓度 - 时间曲线中的第二个峰值通常在给药后6 - 12小时出现。这对血浆浓度 - 时间曲线下面积(AUC)的贡献约为40%。MPA的平均消除半衰期为9至17小时。MPA在个体间和个体内的药代动力学变异性很大。剂量标准化的MPA AUC变化可能超过10倍。对于严重肾功能损害、肝病和低白蛋白血症患者,应谨慎解释总MPA浓度。在这些个体中,MPA和MPAG与血浆蛋白的结合可能会改变,从而改变游离MPA的可用比例。总MPA的表观口服清除率(CL/F)似乎与游离比例的增加成比例增加,同时总MPA AUC降低。然而,MPA游离浓度可能变化不大。环孢素通过MRP - 2抑制MPAG的胆汁排泄,减少MPA的肠肝循环。霉酚酸酯与环孢素联合使用时,MPA的暴露量比单独使用或与他克莫司或西罗莫司联合使用时低约30 - 40%。高剂量的皮质类固醇可能诱导UGT的表达,减少MPA的暴露。其他合并用药可能会干扰霉酚酸酯的吸收、肠肝循环和代谢。大多数关于MPA的药代动力学研究涉及霉酚酸酯治疗而非EC - 霉酚酸钠治疗。在群体药代动力学研究中,成人中MPA的CL/F范围为14.1至34.9 L/h(与环孢素联合治疗)和11.9至25.4 L/h(与他克莫司联合治疗)。患者体重、血清白蛋白浓度和免疫抑制剂联合治疗对CL/F有显著影响。大多数关于MPA的药效学数据是在肾移植后第一年接受霉酚酸酯治疗的患者中获得的。低MPA AUC与活检证实的急性排斥反应发生率增加有关。胃肠道不良事件可能与剂量有关。在一些但并非所有研究中,白细胞减少和贫血与高MPA AUC、谷浓度和代谢产物浓度有关。在一些研究中,高游离MPA暴露已被确定为白细胞减少的危险因素。将0至12小时的总MPA AUC(AUC12)目标设定为30 - 60 mg·hr/L可能会将急性排斥反应的风险降至最低,并可能降低毒性。IMPDH监测尚处于早期实验阶段。霉酚酸酯治疗的个体化应能改善患者的预后。MPA AUC12似乎是进行这种个体化的最有用的暴露量指标。有限采样策略和贝叶斯预测是在没有完整浓度 - 时间曲线的情况下估计MPA AUC12的实用方法。目标浓度干预在移植后的头几个月以及抗排斥治疗发生重大变化之前可能特别有用。对于肾功能或肝功能受损或低白蛋白血症的患者,游离药物测量对于进一步解释MPA暴露可能很有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验