Suppr超能文献

使用主动前馈的高速线性光学量子计算。

High-speed linear optics quantum computing using active feed-forward.

作者信息

Prevedel Robert, Walther Philip, Tiefenbacher Felix, Böhi Pascal, Kaltenbaek Rainer, Jennewein Thomas, Zeilinger Anton

机构信息

Institute for Experimental Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.

出版信息

Nature. 2007 Jan 4;445(7123):65-9. doi: 10.1038/nature05346.

Abstract

As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

摘要

作为量子计算中的信息载体,光子量子比特具有退相干可忽略不计的优势。然而,缺乏任何显著的光子 - 光子相互作用对于实现非平凡的双量子比特门来说是个问题。一种解决方案是通过测量引入有效的非线性,从而实现概率性门操作。在单向量子计算中,随机量子测量误差可以通过应用前馈技术来克服,使得未来的测量基取决于早期的测量结果。一旦制备了簇态(单向量子计算所基于的高度纠缠多粒子态),该技术对于实现确定性量子计算至关重要。在此,我们在单向量子计算实验中实现了测量与主动前馈的级联方案。我们证明,对于完美的簇态且无光子损失的情况,我们的量子计算方案将以良好的保真度运行,并且我们的前馈组件对于检测到的光子具有非常高的速度和低误差。利用当前技术,使用电光调制器,单个计算步骤(在我们的案例中是单个前馈周期)可以在不到150纳秒的时间内运行。这对于单向量子计算机的未来发展是一个重要成果,其大规模实现将取决于所需高度纠缠簇态的制备和检测方面的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验