Suppr超能文献

钠离子再循环与等渗转运。

Na+ recirculation and isosmotic transport.

作者信息

Larsen E H, Møbjerg N

机构信息

Department of Molecular Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.

出版信息

J Membr Biol. 2006;212(1):1-15. doi: 10.1007/s00232-006-0864-x. Epub 2007 Jan 6.

Abstract

The Na(+) recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na(+) serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (-/-) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na(+) in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na(+) reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6-7 mOsm in small intestine and < or = 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na(+) recirculation of 50-70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na(+) uptake, which is not included in the mathematical treatment.

摘要

溶质偶联液体吸收的钠(Na⁺)再循环理论是对Curran提出并由Diamond和Bossert分析的局部渗透概念的扩展。基于对小肠的研究,该理论假设观察到的Na⁺再循环用于调节吸收液的渗透压。分别再现小肠和近端小管生物电和水渗透特性的数学模型预测了一系列重要的观察结果,如等渗转运、低渗转运、溶剂拖曳、异常溶剂拖曳、AQP1基因敲除小鼠近端小管中的残余水力通透性,以及水力通透性与逆转跨上皮水流所需浓度差之间的反比关系。该模型再现了用蔗糖替代管腔NaCl后细胞和细胞间外侧间隙(lis)的体积反应,以及体积吸收对管腔NaCl浓度的线性依赖性。对紧密连接中Na⁺溶剂拖曳的分析为Na⁺重吸收惊人的高代谢效率提供了解释。该模型预测并解释了稀释外部浴液中的低代谢效率。Lis的高渗性由顶端质膜和紧密连接的水力通透性决定,小肠中为6 - 7 mOsm,近端小管中≤1 mOsm。真正的等渗转运在小肠中需要50 - 70%的Na⁺再循环,但在近端小管中可能几乎无法测量。该模型无法再现某类观察结果:AQP1基因敲除小鼠在跨上皮渗透平衡时体积吸收减少,以及胆囊在稀释外部溶液中刺激水吸收。因此,这表明顶端Na⁺摄取存在细胞调节,而这未包含在数学处理中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验