Suppr超能文献

表达 SGLT1 的简约肾模型的生物物理分析揭示了腔膜和侧膜之间的串扰以及等渗转运的合理机制。

Biophysical Analysis of a Minimalistic Kidney Model Expressing SGLT1 Reveals Crosstalk between Luminal and Lateral Membranes and a Plausible Mechanism of Isosmotic Transport.

机构信息

Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.

Department of Wind Energy, Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

Biomolecules. 2024 Jul 23;14(8):889. doi: 10.3390/biom14080889.

Abstract

We extended our model of the S1 tubular segment to address the mechanisms by which SGLT1 interacts with lateral Na/K pumps and tight junctional complexes to generate isosmotic fluid reabsorption via tubular segment S3. The strategy applied allowed for simulation of laboratory experiments. Reproducing known experimental results constrained the range of acceptable model outputs and contributed to minimizing the free parameter space. (1) In experimental conditions, published Na and K concentrations of proximal kidney cells were found to deviate substantially from their normal physiological levels. Analysis of the mechanisms involved suggested insufficient oxygen supply as the cause and, indirectly, that a main function of the Na/H exchanger (NHE3) is to extrude protons stemming from mitochondrial energy metabolism. (2) The water path from the lumen to the peritubular space passed through aquaporins on the cell membrane and claudin-2 at paracellular tight junctions, with an additional contribution to water transport by the coupling of 1 glucose:2 Na:400 HO in SGLT1. (3) A Na-uptake component passed through paracellular junctions via solvent drag in Na- and water-permeable claudin-2, thus bypassing the Na/K pump, in agreement with the findings of early studies. (4) Electrical crosstalk between apical rheogenic SGLT1 and lateral rheogenic Na/K pumps resulted in tight coupling of luminal glucose uptake and transepithelial water flow. (5) Isosmotic transport was achieved by Na-mediated ion recirculation at the peritubular membrane.

摘要

我们扩展了 S1 管状段模型,以研究 SGLT1 与横向 Na/K 泵和紧密连接复合物相互作用的机制,从而通过管状段 S3 实现等渗液体重吸收。所应用的策略允许模拟实验室实验。重现已知的实验结果限制了模型输出的可接受范围,并有助于最小化自由参数空间。(1)在实验条件下,发现发表的近端肾细胞的 Na 和 K 浓度与正常生理水平有很大偏差。对所涉及的机制的分析表明,供氧不足是原因,间接表明 Na/H 交换器(NHE3)的主要功能是排出源自线粒体能量代谢的质子。(2)从管腔到管周空间的水途径穿过细胞膜上的水通道蛋白和紧密连接的 Claudin-2,通过 SGLT1 中 1 葡萄糖:2 Na:400 HO 的偶联对水转运有额外贡献。(3)Na 摄取成分通过具有溶剂拖曳作用的 Claudin-2 穿过细胞旁连接,从而绕过 Na/K 泵,这与早期研究的发现一致。(4)顶端流变性 SGLT1 和横向流变性 Na/K 泵之间的电串扰导致管腔葡萄糖摄取和跨上皮水流紧密偶联。(5)通过管周膜上的 Na 介导的离子再循环实现等渗转运。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/907d/11352722/6a4e947e116a/biomolecules-14-00889-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验