Suppr超能文献

蛋白质表面侧链构象的预测。

Prediction of side-chain conformations on protein surfaces.

作者信息

Xiang Zhexin, Steinbach Peter J, Jacobson Matthew P, Friesner Richard A, Honig Barry

机构信息

Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892-5624, USA.

出版信息

Proteins. 2007 Mar 1;66(4):814-23. doi: 10.1002/prot.21099.

Abstract

An approach is described that improves the prediction of the conformations of surface side chains in crystal structures, given the main-chain conformation of a protein. A key element of the methodology involves the use of the colony energy. This phenomenological term favors conformations found in frequently sampled regions, thereby approximating entropic effects and serving to smooth the potential energy surface. Use of the colony energy significantly improves prediction accuracy for surface side chains with little additional computational cost. Prediction accuracy was quantified as the percentage of side-chain dihedral angles predicted to be within 40 degrees of the angles measured by X-ray diffraction. Use of the colony energy in predictions for single side chains improved the prediction accuracy for chi(1) and chi(1+2) from 65 and 40% to 74 and 59%, respectively. Several other factors that affect prediction of surface side-chain conformations were also analyzed, including the extent of conformational sampling, details of the rotamer library employed, and accounting for the crystallographic environment. The prediction of conformations for polar residues on the surface was generally found to be more difficult than those for hydrophobic residues, except for polar residues participating in hydrogen bonds with other protein groups. For surface residues with hydrogen-bonded side chains, the prediction accuracy of chi(1) and chi(1+2) was 79 and 63%, respectively. For surface polar residues, in general (all side-chain prediction), the accuracy of chi(1) and chi(1+2) was only 73 and 56%, respectively. The most accurate results were obtained using the colony energy and an all-atom description that includes neighboring molecules in the crystal (protein chains and hetero atoms). Here, the accuracy of chi(1) and chi(1+2) predictions for surface side chains was 82 and 73%, respectively. The root mean square deviations obtained for hydrogen-bonding surface side chains were 1.64 and 1.81 A, with and without consideration of crystal packing effects, respectively.

摘要

本文描述了一种方法,在已知蛋白质主链构象的情况下,该方法可改进对晶体结构中表面侧链构象的预测。该方法的一个关键要素是使用群体能量。这个唯象学术语有利于在频繁采样区域中发现的构象,从而近似熵效应并有助于平滑势能面。使用群体能量以很少的额外计算成本显著提高了表面侧链的预测准确性。预测准确性被量化为预测的侧链二面角在通过X射线衍射测量的角度的40度范围内的百分比。在单一侧链预测中使用群体能量将χ(1)和χ(1+2)的预测准确性分别从65%和40%提高到74%和59%。还分析了其他几个影响表面侧链构象预测的因素,包括构象采样的程度、所采用的旋转异构体库的细节以及考虑晶体学环境。一般发现,预测表面极性残基的构象比预测疏水残基的构象更困难,但与其他蛋白质基团形成氢键的极性残基除外。对于具有氢键侧链的表面残基,χ(1)和χ(1+2)的预测准确性分别为79%和63%。对于表面极性残基,总体而言(所有侧链预测),χ(1)和χ(1+2)的准确性分别仅为73%和56%。使用群体能量和包括晶体中相邻分子(蛋白质链和杂原子)的全原子描述可获得最准确的结果。在此,表面侧链的χ(1)和χ(1+2)预测准确性分别为82%和73%。对于氢键表面侧链,考虑和不考虑晶体堆积效应时获得的均方根偏差分别为1.64 Å和1.81 Å。

相似文献

1
Prediction of side-chain conformations on protein surfaces.
Proteins. 2007 Mar 1;66(4):814-23. doi: 10.1002/prot.21099.
4
The role of carbon-donor hydrogen bonds in stabilizing tryptophan conformations.
Proteins. 2004 Mar 1;54(4):716-26. doi: 10.1002/prot.10577.
5
Improved prediction of protein side-chain conformations with SCWRL4.
Proteins. 2009 Dec;77(4):778-95. doi: 10.1002/prot.22488.
6
Intrinsic energy landscapes of amino acid side-chains.
J Chem Inf Model. 2012 Jun 25;52(6):1559-72. doi: 10.1021/ci300079j. Epub 2012 May 24.
7
Equilibrium transitions between side-chain conformations in leucine and isoleucine.
Proteins. 2015 Aug;83(8):1488-99. doi: 10.1002/prot.24837.
9
Analysis of the relationship between side-chain conformation and secondary structure in globular proteins.
J Mol Biol. 1987 Nov 20;198(2):295-310. doi: 10.1016/0022-2836(87)90314-7.
10
Side-chain modeling with an optimized scoring function.
Protein Sci. 2002 Feb;11(2):322-31. doi: 10.1110/ps.24902.

引用本文的文献

1
Computational Feasibility of an Exhaustive Search of Side-Chain Conformations in Protein-Protein Docking.
J Comput Chem. 2018 Sep 15;39(24):2012-2021. doi: 10.1002/jcc.25381. Epub 2018 Sep 18.
3
Assessment of protein side-chain conformation prediction methods in different residue environments.
Proteins. 2014 Sep;82(9):1971-84. doi: 10.1002/prot.24552. Epub 2014 Mar 31.
4
PELE web server: atomistic study of biomolecular systems at your fingertips.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W322-8. doi: 10.1093/nar/gkt454. Epub 2013 May 31.
5
Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
Nature. 2012 Oct 18;490(7420):361-6. doi: 10.1038/nature11524.
6
SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations.
Proteins. 2012 Jan;80(1):142-53. doi: 10.1002/prot.23170. Epub 2011 Nov 9.
7
A photon-free approach to transmembrane protein structure determination.
J Mol Biol. 2011 Dec 9;414(4):596-610. doi: 10.1016/j.jmb.2011.10.016. Epub 2011 Oct 15.
8
Progress in super long loop prediction.
Proteins. 2011 Oct;79(10):2920-35. doi: 10.1002/prot.23129. Epub 2011 Aug 23.

本文引用的文献

2
Improved side-chain modeling for protein-protein docking.
Protein Sci. 2005 May;14(5):1328-39. doi: 10.1110/ps.041222905. Epub 2005 Mar 31.
3
Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography.
Structure. 2004 May;12(5):831-8. doi: 10.1016/j.str.2004.02.031.
5
High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy.
Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):711-6. doi: 10.1073/pnas.0304849101. Epub 2004 Jan 8.
8
Side-chain conformation angles of amino acids: effect of temperature factor cut-off.
J Struct Biol. 2003 Sep;143(3):181-4. doi: 10.1016/j.jsb.2003.08.003.
9
A graph-theory algorithm for rapid protein side-chain prediction.
Protein Sci. 2003 Sep;12(9):2001-14. doi: 10.1110/ps.03154503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验