基底神经节和皮层在不同动作之间实现最优决策。

The basal ganglia and cortex implement optimal decision making between alternative actions.

作者信息

Bogacz Rafal, Gurney Kevin

机构信息

Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.

出版信息

Neural Comput. 2007 Feb;19(2):442-77. doi: 10.1162/neco.2007.19.2.442.

Abstract

Neurophysiological studies have identified a number of brain regions critically involved in solving the problem of action selection or decision making. In the case of highly practiced tasks, these regions include cortical areas hypothesized to integrate evidence supporting alternative actions and the basal ganglia, hypothesized to act as a central switch in gating behavioral requests. However, despite our relatively detailed knowledge of basal ganglia biology and its connectivity with the cortex and numerical simulation studies demonstrating selective function, no formal theoretical framework exists that supplies an algorithmic description of these circuits. This article shows how many aspects of the anatomy and physiology of the circuit involving the cortex and basal ganglia are exactly those required to implement the computation defined by an asymptotically optimal statistical test for decision making: the multihypothesis sequential probability ratio test (MSPRT). The resulting model of basal ganglia provides a new framework for understanding the computation in the basal ganglia during decision making in highly practiced tasks. The predictions of the theory concerning the properties of particular neuronal populations are validated in existing experimental data. Further, we show that this neurobiologically grounded implementation of MSPRT outperforms other candidates for neural decision making, that it is structurally and parametrically robust, and that it can accommodate cortical mechanisms for decision making in a way that complements those in basal ganglia.

摘要

神经生理学研究已经确定了一些在解决行动选择或决策问题中起关键作用的脑区。对于高度熟练的任务,这些区域包括被假设为整合支持替代行动证据的皮层区域以及被假设为在控制行为请求中充当中央开关的基底神经节。然而,尽管我们对基底神经节生物学及其与皮层的连接有相对详细的了解,并且数值模拟研究也证明了其选择性功能,但目前还没有一个正式的理论框架能够提供对这些神经回路的算法描述。本文展示了涉及皮层和基底神经节的神经回路在解剖学和生理学上的许多方面,恰恰是实现由渐近最优统计决策检验所定义的计算(即多假设序贯概率比检验,MSPRT)所必需的。由此产生的基底神经节模型为理解高度熟练任务决策过程中基底神经节的计算提供了一个新的框架。该理论关于特定神经元群体特性的预测在现有实验数据中得到了验证。此外,我们表明这种基于神经生物学的MSPRT实现优于其他神经决策候选方案,它在结构和参数上具有鲁棒性,并且能够以一种补充基底神经节机制的方式容纳皮层决策机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索