Furlong P Michael, Eliasmith Chris
Centre for Theoretical Neuroscience, University of Waterloo, 200 University Ave., Waterloo, ON N2L 3G1 Canada.
Cogn Neurodyn. 2024 Dec;18(6):1-24. doi: 10.1007/s11571-023-10031-7. Epub 2023 Dec 16.
Distributed vector representations are a key bridging point between connectionist and symbolic representations in cognition. It is unclear how uncertainty should be modelled in systems using such representations. In this paper we discuss how bundles of symbols in certain Vector Symbolic Architectures (VSAs) can be understood as defining an object that has a relationship to a probability distribution, and how statements in VSAs can be understood as being analogous to probabilistic statements. The aim of this paper is to show how (spiking) neural implementations of VSAs can be used to implement probabilistic operations that are useful in building cognitive models. We show how similarity operators between continuous values represented as Spatial Semantic Pointers (SSPs), an example of a technique known as fractional binding, induces a quasi-kernel function that can be used in density estimation. Further, we sketch novel designs for networks that compute entropy and mutual information of VSA-represented distributions and demonstrate their performance when implemented as networks of spiking neurons. We also discuss the relationship between our technique and quantum probability, another technique proposed for modelling uncertainty in cognition. While we restrict ourselves to operators proposed for Holographic Reduced Representations, and for representing real-valued data. We suggest that the methods presented in this paper should translate to any VSA where the dot product between fractionally bound symbols induces a valid kernel.
分布式向量表示是认知中联结主义表示和符号表示之间的关键桥梁。目前尚不清楚在使用这种表示的系统中应如何对不确定性进行建模。在本文中,我们讨论了在某些向量符号架构(VSA)中,符号束如何被理解为定义了一个与概率分布有关系的对象,以及VSA中的语句如何被理解为类似于概率语句。本文的目的是展示VSA的(脉冲)神经实现如何用于实现对构建认知模型有用的概率运算。我们展示了表示为空间语义指针(SSP)的连续值之间的相似性算子,这是一种称为分数绑定技术的示例,如何诱导出可用于密度估计的准核函数。此外,我们概述了用于计算VSA表示的分布的熵和互信息的网络的新颖设计,并展示了它们作为脉冲神经元网络实现时的性能。我们还讨论了我们的技术与量子概率之间的关系,量子概率是另一种为认知中的不确定性建模而提出的技术。虽然我们将自己限制在为全息缩减表示提出的算子以及用于表示实值数据的算子上。我们建议本文中提出的方法应能转化到任何分数绑定符号之间的点积能诱导出有效核的VSA上。