Easley Katherine E, Sommer Brandi J, Boanca Gina, Barycki Joseph J, Simpson Melanie A
Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
Biochemistry. 2007 Jan 16;46(2):369-78. doi: 10.1021/bi061537d.
Human UDP-glucose dehydrogenase (UGDH) is a homohexameric enzyme that catalyzes two successive oxidations of UDP-glucose to yield UDP-glucuronic acid, an essential precursor for matrix polysaccharide and proteoglycan synthesis. We previously used crystal coordinates for Streptococcus pyogenes UGDH to generate a model of the human enzyme active site. In the studies reported here, we have used this model to identify three putative active site residues: lysine 220, aspartate 280, and lysine 339. Each residue was site-specifically mutagenized to evaluate its importance for catalytic activity and maintenance of hexameric quaternary structure. Alteration of lysine 220 to alanine, histidine, or arginine significantly impaired enzyme function. Assaying activity over longer time courses revealed a plateau after reduction of a single equivalent of NAD+ in the alanine and histidine mutants, whereas turnover continued in the arginine mutant. Thus, one role of this lysine may be to stabilize anionic transition states during substrate conversion. Mutation of aspartate 280 to asparagine was also severely detrimental to catalysis. The relative position of this residue within the active site and dependence of function on acidic character point toward a critical role for aspartate 280 in activation of the substrate and the catalytic cysteine. Finally, changing lysine 339 to alanine yielded the wild-type Vmax, but a 165-fold decrease in affinity for UDP-glucose. Interestingly, gel filtration of this substrate-binding mutant also determined it was a dimer, indicating that hexameric quaternary structure is not critical for catalysis. Collectively, this analysis has provided novel insights into the complex catalytic mechanism of UGDH.
人尿苷二磷酸葡萄糖脱氢酶(UGDH)是一种同六聚体酶,催化尿苷二磷酸葡萄糖的两步连续氧化反应,生成尿苷二磷酸葡萄糖醛酸,这是基质多糖和蛋白聚糖合成的重要前体。我们之前利用化脓性链球菌UGDH的晶体坐标构建了人酶活性位点的模型。在本文报道的研究中,我们利用该模型鉴定出三个假定的活性位点残基:赖氨酸220、天冬氨酸280和赖氨酸339。对每个残基进行位点特异性诱变,以评估其对催化活性和六聚体四级结构维持的重要性。将赖氨酸220突变为丙氨酸、组氨酸或精氨酸会显著损害酶的功能。在更长的时间进程中测定活性发现,丙氨酸和组氨酸突变体在还原一当量的NAD⁺后出现平台期,而精氨酸突变体中周转仍在继续。因此,该赖氨酸的一个作用可能是在底物转化过程中稳定阴离子过渡态。将天冬氨酸280突变为天冬酰胺也严重损害催化作用。该残基在活性位点内的相对位置以及功能对酸性特征的依赖性表明,天冬氨酸280在底物和催化半胱氨酸的激活中起关键作用。最后,将赖氨酸339突变为丙氨酸产生了野生型的最大反应速度,但对尿苷二磷酸葡萄糖的亲和力降低了165倍。有趣的是,对该底物结合突变体进行凝胶过滤还确定它是二聚体,这表明六聚体四级结构对催化作用并不关键。总的来说,该分析为UGDH复杂的催化机制提供了新的见解。