Suppr超能文献

参与刺孢霉素氨基脱氧戊糖生物合成的TDP-α-D-葡萄糖脱氢酶CalS8的结构表征

Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis.

作者信息

Singh Shanteri, Michalska Karolina, Bigelow Lance, Endres Michael, Kharel Madan K, Babnigg Gyorgy, Yennamalli Ragothaman M, Bingman Craig A, Joachimiak Andrzej, Thorson Jon S, Phillips George N

机构信息

From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596.

the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439.

出版信息

J Biol Chem. 2015 Oct 23;290(43):26249-58. doi: 10.1074/jbc.M115.673459. Epub 2015 Aug 3.

Abstract

Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.

摘要

经典的UDP-葡萄糖6-脱氢酶(UGDHs;EC 1.1.1.22)催化UDP-α-D-葡萄糖(UDP-Glc)转化为关键代谢前体UDP-α-D-葡萄糖醛酸(UDP-GlcA),并对UDP-Glc表现出特异性。本文报道了由加利车霉素生物合成基因编码的UGDH同源物CalS8的基础生化和结构研究,这是对参与次级代谢的UGDH同源物的首批研究之一。对CalS8相应的生化特性分析表明,CalS8是首批被表征的碱基允许型UGDH同源物之一,其对TDP-Glc的偏好性比对UDP-Glc高15倍以上。分别在2.47 Å和1.95 Å分辨率下对脱辅基CalS8和CalS8·底物·辅因子三元复合物进行的相应结构解析,突出了CalS8与经典UGDHs之间高度的保守性,其中亚基间环结构内的结构差异可能导致了CalS8的碱基允许性。因此,本研究开始为糖核苷酸依赖性脱氢酶的碱基特异性提供一个推测蓝图,并与之前关于加利车霉素氨基戊糖基转移酶CalG4碱基特异性的研究相结合,为加利车霉素氨基戊糖途径是一个TDP-糖依赖性过程提供了越来越多的支持。

相似文献

1
Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis.
J Biol Chem. 2015 Oct 23;290(43):26249-58. doi: 10.1074/jbc.M115.673459. Epub 2015 Aug 3.
2
Characterization of Early Enzymes Involved in TDP-Aminodideoxypentose Biosynthesis en Route to Indolocarbazole AT2433.
Chembiochem. 2015 Oct 12;16(15):2141-6. doi: 10.1002/cbic.201500365. Epub 2015 Sep 18.
3
UDP-glucose dehydrogenases of maize: a role in cell wall pentose biosynthesis.
Biochem J. 2005 Oct 15;391(Pt 2):409-15. doi: 10.1042/BJ20050800.
4
Structural basis for the broad substrate range of the UDP-sugar pyrophosphorylase from Leishmania major.
J Mol Biol. 2011 Jan 14;405(2):461-78. doi: 10.1016/j.jmb.2010.10.057. Epub 2010 Nov 10.
5
Cloning and endogenous expression of a Eucalyptus grandis UDP-glucose dehydrogenase cDNA.
Genet Mol Biol. 2010 Oct;33(4):686-95. doi: 10.1590/S1415-47572010005000078. Epub 2010 Dec 1.
8
Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium.
Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1271-80. doi: 10.1107/S1399004714002363. Epub 2014 Apr 29.
9
The structural basis of substrate promiscuity in UDP-hexose 4-epimerase from the hyperthermophilic Eubacterium Thermotoga maritima.
Arch Biochem Biophys. 2015 Nov 1;585:39-51. doi: 10.1016/j.abb.2015.08.025. Epub 2015 Sep 3.
10
Structural basis of cooperativity in human UDP-glucose dehydrogenase.
PLoS One. 2011;6(10):e25226. doi: 10.1371/journal.pone.0025226. Epub 2011 Oct 3.

引用本文的文献

本文引用的文献

1
Characterization of Early Enzymes Involved in TDP-Aminodideoxypentose Biosynthesis en Route to Indolocarbazole AT2433.
Chembiochem. 2015 Oct 12;16(15):2141-6. doi: 10.1002/cbic.201500365. Epub 2015 Sep 18.
2
A comprehensive review of glycosylated bacterial natural products.
Chem Soc Rev. 2015 Nov 7;44(21):7591-697. doi: 10.1039/c4cs00426d.
3
Hysteresis in human UDP-glucose dehydrogenase is due to a restrained hexameric structure that favors feedback inhibition.
Biochemistry. 2014 Dec 30;53(51):8043-51. doi: 10.1021/bi500594x. Epub 2014 Dec 18.
4
Advances in Rosetta structure prediction for difficult molecular-replacement problems.
Acta Crystallogr D Biol Crystallogr. 2013 Nov;69(Pt 11):2202-8. doi: 10.1107/S0907444913023305. Epub 2013 Oct 12.
6
Structure of a UDP-glucose dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Sep 1;68(Pt 9):1003-7. doi: 10.1107/S1744309112030667. Epub 2012 Aug 29.
7
The structural biology of enzymes involved in natural product glycosylation.
Nat Prod Rep. 2012 Oct;29(10):1201-37. doi: 10.1039/c2np20039b. Epub 2012 Jun 12.
8
phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.
J Struct Funct Genomics. 2012 Jun;13(2):81-90. doi: 10.1007/s10969-012-9129-3. Epub 2012 Mar 15.
10
Biosynthesis of UDP-glucuronic acid and UDP-galacturonic acid in Bacillus cereus subsp. cytotoxis NVH 391-98.
FEBS J. 2012 Jan;279(1):100-12. doi: 10.1111/j.1742-4658.2011.08402.x. Epub 2011 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验