Suppr超能文献

结直肠癌中无淋巴结结构的壁外癌灶:预后分期的最佳分类

Extramural cancer deposits without nodal structure in colorectal cancer: optimal categorization for prognostic staging.

作者信息

Ueno Hideki, Mochizuki Hidetaka, Hashiguchi Yojiro, Ishiguro Megumi, Miyoshi Masayoshi, Kajiwara Yoshiki, Sato Taichi, Shimazaki Hideyuki, Hase Kazuo

机构信息

Department of Surgery, National Defense Medical College, Namiki, Tokorozawa, Saitama, Japan.

出版信息

Am J Clin Pathol. 2007 Feb;127(2):287-94. doi: 10.1309/903UT10VQ3LC7B8L.

Abstract

To establish an optimal categorization of cancer deposits without lymph node structure (extranodal cancer deposits [EX]) in a prognostic staging system, we analyzed 1,027 cases in which patients underwent potentially curative surgery for advanced colorectal adenocarcinoma. EX was classified as vascular invasion-type (VAS) or non-VAS.A total of 512 foci of EX were identified in 205 patients (20.0%), with VAS and non-VAS found in 68 and 182 patients, respectively. The hazard ratio for patients with nodal involvement was 3.6 and for patients with VAS and non-VAS, 2.5 and 4.7, respectively. Based on multivariate analysis of these 3 parameters, only nodal involvement and non-VAS were significant prognosticators. By using the Akaike information criterion, N staging was capable of predicting survival outcome with the highest accuracy when both nodal involvement and non-VAS were treated together as an N factor and VAS was treated as a T factor ("new categorization"). The clinical significance of the TNM grading system for colorectal cancer would be enhanced if we treat EX as a new categorization.

摘要

为了在预后分期系统中建立一种针对无淋巴结结构的癌灶(结外癌灶[EX])的最佳分类方法,我们分析了1027例接受晚期结直肠癌潜在根治性手术的患者。EX被分为血管侵犯型(VAS)或非VAS型。在205例患者(20.0%)中总共发现了512个EX病灶,其中VAS型和非VAS型分别见于68例和182例患者。有淋巴结转移患者的风险比为3.6,VAS型和非VAS型患者的风险比分别为2.5和4.7。基于对这3个参数的多因素分析,只有淋巴结转移和非VAS是显著的预后因素。通过使用赤池信息准则,当将淋巴结转移和非VAS作为一个N因素,VAS作为一个T因素一起处理时(“新分类”),N分期能够以最高的准确性预测生存结果。如果我们将EX作为一种新分类来处理,结直肠癌TNM分级系统的临床意义将会增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验