Tan Soon-Eng
Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
Behav Pharmacol. 2007 Feb;18(1):29-38. doi: 10.1097/FBP.0b013e3280142636.
This study investigated the interactive roles of nitric oxide and calcium/calmodulin-dependent protein kinase II in inhibitory avoidance learning. In Experiment I, rats were trained on a one-trial step-through inhibitory avoidance learning task, whereas the controls were trained in a noncontingent stimulus-pairing condition. The experimental rats showed significantly higher retention scores than the control rats. Correspondingly, the rats in the experimental group showed significantly higher Ca2+-independent activity of the hippocampal calcium/calmodulin-dependent protein kinase II and a significant increase in the endogenous phosphorylation of neuronal nitric oxide synthase. The intrahippocampal infusion of 7-nitro-indazole, 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, or 2-amino-5-phosphonopentanoic acid disrupted inhibitory avoidance learning. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that these drugs significantly depressed phosphorylation of hippocampal nitric oxide synthase. The Ca2+-independent activity of hippocampal calcium/calmodulin-dependent protein kinase II was significantly lower in the 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine or the 2-amino-5-phosphonopentanoic acid-infused group compared with the controls. Although these depressed activities were not reversed by the infusion of a nitric oxide donor (sodium nitroprusside), this did significantly improve the rats' inhibitory avoidance deficit. These results, taken together, indicate that the nitric oxide synthase activation is essential for inhibitory avoidance learning, which may be triggered via the calcium/calmodulin-dependent protein kinase II activation in the hippocampus.
本研究调查了一氧化氮和钙/钙调蛋白依赖性蛋白激酶II在抑制性回避学习中的相互作用。在实验I中,大鼠接受一次性穿梭抑制性回避学习任务训练,而对照组在非偶然性刺激配对条件下训练。实验大鼠的记忆保持分数显著高于对照大鼠。相应地,实验组大鼠海马钙/钙调蛋白依赖性蛋白激酶II的钙非依赖性活性显著更高,且神经元型一氧化氮合酶的内源性磷酸化显著增加。海马内注射7-硝基吲唑、2-[N-(2-羟乙基)-N-(4-甲氧基苯磺酰基)]-氨基-N-(4-氯肉桂基)-N-甲基苄胺或2-氨基-5-膦酰戊酸会破坏抑制性回避学习。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析表明,这些药物显著降低了海马一氧化氮合酶的磷酸化。与对照组相比,在注射2-[N-(2-羟乙基)-N-(4-甲氧基苯磺酰基)]-氨基-N-(4-氯肉桂基)-N-甲基苄胺或2-氨基-5-膦酰戊酸的组中,海马钙/钙调蛋白依赖性蛋白激酶II的钙非依赖性活性显著更低。虽然注射一氧化氮供体(硝普钠)并未逆转这些降低的活性,但这确实显著改善了大鼠的抑制性回避缺陷。综合这些结果表明,一氧化氮合酶的激活对于抑制性回避学习至关重要,这可能是通过海马中钙/钙调蛋白依赖性蛋白激酶II的激活引发的。