Livore Verónica I, Tripodi Karina E J, Uttaro Antonio D
Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina.
FEBS J. 2007 Jan;274(1):264-74. doi: 10.1111/j.1742-4658.2006.05581.x.
Leishmania major synthesizes polyunsaturated fatty acids by using Delta6, Delta5 and Delta4 front-end desaturases, which have recently been characterized [Tripodi KE, Buttigliero LV, Altabe SG & Uttaro AD (2006) FEBS J273, 271-280], and two predicted elongases specific for C18 Delta6 and C20 Delta5 polyunsaturated fatty acids, respectively. Trypanosoma brucei and Trypanosoma cruzi lack Delta6 and Delta5 desaturases but contain Delta4 desaturases, implying that trypanosomes use exogenous polyunsaturated fatty acids to produce C22 Delta4 fatty acids. In order to identify putative precursors of these C22 fatty acids and to completely describe the pathways for polyunsaturated fatty acid biosynthesis in trypanosomatids, we have performed a search in the three genomes and identified four different elongase genes in T. brucei, five in T. cruzi and 14 in L. major. After a phylogenetic analysis of the encoded proteins together with elongases from a variety of other organisms, we selected four candidate polyunsaturated fatty acid elongases. Leishmania major CAJ02037, T. brucei AAX69821 and T. cruzi XP_808770 share 57-52% identity, and group together with C20 Delta5 polyunsaturated fatty acid elongases from algae. The predicted activity was corroborated by functional characterization after expression in yeast. T. brucei elongase was also able to elongate Delta8 and Delta11 C20 polyunsaturated fatty acids. L. major CAJ08636, which shares 33% identity with Mortierella alpinaDelta6 elongase, showed a high specificity for C18 Delta6 polyunsaturated fatty acids. In all cases, a preference for n6 polyunsaturated fatty acids was observed. This indicates that L. major has, as predicted, Delta6 and Delta5 elongases and a complete pathway for polyunsaturated fatty acid biosynthesis. Trypanosomes contain only Delta5 elongases, which, together with Delta4 desaturases, allow them to use eicosapentaenoic acid and arachidonic acid, a precursor that is relatively abundant in the host, for C22 polyunsaturated fatty acid biosynthesis.
硕大利什曼原虫通过使用Delta6、Delta5和Delta4前端去饱和酶来合成多不饱和脂肪酸,这些酶最近已被鉴定[Tripodi KE, Buttigliero LV, Altabe SG & Uttaro AD (2006) FEBS J273, 271 - 280],以及两种分别对C18 Delta6和C20 Delta5多不饱和脂肪酸具有特异性的预测延伸酶。布氏锥虫和克氏锥虫缺乏Delta6和Delta5去饱和酶,但含有Delta4去饱和酶,这意味着锥虫利用外源多不饱和脂肪酸来产生C22 Delta4脂肪酸。为了鉴定这些C22脂肪酸的假定前体,并完整描述锥虫中多不饱和脂肪酸生物合成途径,我们在这三种基因组中进行了搜索,在布氏锥虫中鉴定出四个不同的延伸酶基因,在克氏锥虫中鉴定出五个,在硕大利什曼原虫中鉴定出十四个。在对编码蛋白与来自多种其他生物的延伸酶进行系统发育分析后,我们选择了四个候选多不饱和脂肪酸延伸酶。硕大利什曼原虫CAJ02037、布氏锥虫AAX69821和克氏锥虫XP_808770的同一性为57 - 52%,并与来自藻类的C20 Delta5多不饱和脂肪酸延伸酶归为一组。在酵母中表达后的功能表征证实了预测的活性。布氏锥虫延伸酶也能够延长Delta8和Delta11 C20多不饱和脂肪酸。与高山被孢霉Delta6延伸酶同一性为33%的硕大利什曼原虫CAJ08636对C18 Delta6多不饱和脂肪酸表现出高度特异性。在所有情况下,均观察到对n6多不饱和脂肪酸的偏好。这表明,如预测的那样,硕大利什曼原虫具有Delta6和Delta5延伸酶以及完整的多不饱和脂肪酸生物合成途径。锥虫仅含有Delta5延伸酶,这些延伸酶与Delta4去饱和酶一起,使它们能够利用二十碳五烯酸和花生四烯酸(一种在宿主中相对丰富的前体)来进行C22多不饱和脂肪酸的生物合成。