Riley Richard D, Abrams Keith R, Sutton Alexander J, Lambert Paul C, Thompson John R
Centre for Medical Statistics and Health Evaluation, School of Health Sciences, University of Liverpool, Shelley's Cottage, Brownlow Street, Liverpool, L69 3GS, UK.
BMC Med Res Methodol. 2007 Jan 12;7:3. doi: 10.1186/1471-2288-7-3.
When multiple endpoints are of interest in evidence synthesis, a multivariate meta-analysis can jointly synthesise those endpoints and utilise their correlation. A multivariate random-effects meta-analysis must incorporate and estimate the between-study correlation (rhoB).
In this paper we assess maximum likelihood estimation of a general normal model and a generalised model for bivariate random-effects meta-analysis (BRMA). We consider two applied examples, one involving a diagnostic marker and the other a surrogate outcome. These motivate a simulation study where estimation properties from BRMA are compared with those from two separate univariate random-effects meta-analyses (URMAs), the traditional approach.
The normal BRMA model estimates rhoB as -1 in both applied examples. Analytically we show this is due to the maximum likelihood estimator sensibly truncating the between-study covariance matrix on the boundary of its parameter space. Our simulations reveal this commonly occurs when the number of studies is small or the within-study variation is relatively large; it also causes upwardly biased between-study variance estimates, which are inflated to compensate for the restriction on rhoB. Importantly, this does not induce any systematic bias in the pooled estimates and produces conservative standard errors and mean-square errors. Furthermore, the normal BRMA is preferable to two normal URMAs; the mean-square error and standard error of pooled estimates is generally smaller in the BRMA, especially given data missing at random. For meta-analysis of proportions we then show that a generalised BRMA model is better still. This correctly uses a binomial rather than normal distribution, and produces better estimates than the normal BRMA and also two generalised URMAs; however the model may sometimes not converge due to difficulties estimating rhoB.
A BRMA model offers numerous advantages over separate univariate synthesises; this paper highlights some of these benefits in both a normal and generalised modelling framework, and examines the estimation of between-study correlation to aid practitioners.
当证据综合中有多个终点值得关注时,多变量荟萃分析可以联合综合这些终点并利用它们之间的相关性。多变量随机效应荟萃分析必须纳入并估计研究间相关性(rhoB)。
在本文中,我们评估双变量随机效应荟萃分析(BRMA)的一般正态模型和广义模型的最大似然估计。我们考虑两个应用实例,一个涉及诊断标志物,另一个涉及替代结局。这些实例促使我们开展一项模拟研究,将BRMA的估计特性与传统方法——两个单独的单变量随机效应荟萃分析(URMA)的估计特性进行比较。
在两个应用实例中,正态BRMA模型均将rhoB估计为 -1。通过分析我们表明,这是由于最大似然估计器在其参数空间的边界上合理地截断了研究间协方差矩阵。我们的模拟显示,当研究数量较少或研究内变异相对较大时,这种情况通常会发生;它还会导致研究间方差估计值出现向上偏差,这些估计值被夸大以补偿对rhoB的限制。重要的是,这不会在合并估计值中引起任何系统偏差,并产生保守的标准误差和均方误差。此外,正态BRMA比两个正态URMA更优;BRMA中合并估计值的均方误差和标准误差通常更小,尤其是在数据随机缺失的情况下。对于比例的荟萃分析,我们随后表明广义BRMA模型更好。该模型正确地使用了二项分布而非正态分布,并且比正态BRMA以及两个广义URMA产生更好的估计值;然而,由于估计rhoB存在困难,该模型有时可能无法收敛。
与单独的单变量综合分析相比,BRMA模型具有许多优势;本文在正态和广义建模框架中突出了其中一些优势,并研究了研究间相关性的估计,以帮助从业者。